M1.

(a) (i)
$$d_0 = (\text{speed} \times \text{time} = 1.8 \times 10^8 \times 95 \times 10^{-9}) = 17(.1) \text{ m s}^{-1}$$

(ii)
$$d (= d_0 (1 - v^2/c^2)^{\frac{1}{2}})$$

 $= 17.1 \times (1 - (1.8 \times 10^8/3.0 \times 10^8)^2))^{\frac{1}{2}} \sqrt{t}^{\frac{1}{2}}$
 $= 14 \text{ m } \sqrt{t}^{\frac{1}{2}} (\text{ or } 13.7 \text{ m or } 13.68 \text{ m})$
or
 $t = t_0 (1 - v^2/c^2)^{\frac{1}{2}}$
 $95 = t_0 \times (1 - (1.8 \times 10^8/3.0 \times 10^8)^2)^{-\frac{1}{2}} \text{ gives } t_0 = 76 \text{ ns } \sqrt{t}$
 $d = vt_0 = 1.8 \times 10^8 \times 76 \times 10^{-9} = 14 \text{ m } \sqrt{t} \text{ (or } 13.7 \text{ m or } 13.68 \text{ m})$

1

(b)
$$m (= m_b (1 - v^2/c^2)^{-s})$$

 $= 1.67(3) \times 10^{-27} \times (1 - (1.8 \times 10^s/3.0 \times 10^s)^2)^{-s}) \checkmark$
 $= 2.09 \times 10^{-27} \text{ kg }\checkmark$
kinetic energy = $(m - m_b) c^2$
or correct calculation of $E = mc^2$ (= $1.88 \times 10^{-10} \text{ J}$)
or correct calculation of $E_0 = m_b c^2$ (= $1.50 \times 10^{-10} \text{ J}$) \checkmark
 $\frac{\text{kinetic energy}}{\text{rest energy}} = \frac{(m - m_b)c^2}{m_b c^2} = \frac{(2.09 - 1.67) \times 10^{-27}}{1.67 \times 10^{-27}} \checkmark$
 $= 0.25 \text{ (allow 0.245 to 0.255 or 1/4 or 1:4) }\checkmark$

٢۶	21
Γc	ני

5

M2.(a) (i) (use of
$$v = \frac{d}{t}$$
 gives) $v = \frac{240}{0.84 \times 10^{-6}} = 2.8(6) \times 10^{\circ} \text{ m s}^{-1}$ (1)

(ii) actual length = 240 m (1)

(use of
$$l = l_0 \left(1 - \frac{v^2}{c^2}\right)^{1/2}$$
 gives)

$$l = 240 \left(1 - \frac{2.86^2}{3^2} \right)^{1/2}$$
(1)

(allow C.E. for value of v) $l = (240 \times 0.30) = 72(.5) \text{ m}$ (1)

(b) time between two events depends on speed of observer

length in particle frame,

$$[or t = t_0 \left(1 - \frac{v^2}{c^2}\right)^{1/2} or rocket time depends on speed of traveller]$$
(1)

traveller's journey time is the proper time between start and stop [or t_0 is the proper time or t is the time on Earth] (1) journey time measured on Earth > journey time measured by traveller [or $t > t_0$ or rocket time slower / less than Earth time] (1) traveller younger than twin on return to Earth (1)

M3.(a) (i) speed of light (in free space) independent of motion of source (1) and of motion of observer (1) [alternative (i) speed of light is same in all frames of reference (1)]

(ii) laws of physics have same form in all inertial frames (1) inertial frame is one in which Newton's 1st law of motion obeyed (1) laws of physics unchanged in coordinate transformation from one inertial frame of reference to any other inertial frame (1)

(max 4)

[8]

4

4

(b) (i)
$$m\left(=m_0\left(1-\frac{v^2}{c^2}\right)^{-\frac{1}{2}}\right) = 1.88 \times 10^{-28} \left(1-(0.996)^2\right)^{-\frac{1}{2}}$$
 (1)

(ii)
$$t_0 = 2.2 \times 10^{-6} \text{ s} \text{ (1)}$$

 $t \left(= t_0 \left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}} \right)$
 $= 2.2 \times 10^{-6} \left(1 - (0.996)^2 \right)^{-\frac{1}{2}} \text{ (s) (1)}$

= 2.46 × 10⁻⁵ (s) (1)
$$s(=vt = 3.00 \times 10^8 \times 0.996 \times 2.46 \times 10^{-5}) = 7360 \text{ m}$$
 (1)

[alternative (ii)

$$l (= vt = 0.996 \times 3.0 \times 10^{\circ} \times 2.2 \times 10^{\circ}) = 657 \text{ (m)}$$
 (1)
 $\sqrt{1 - \frac{v^2}{c^2}}$

correct substitution of l in $l = l_0 \sqrt{c^2}$ (1)

$$l_0 \left(= \frac{l}{\sqrt{1 - \frac{v^2}{c^2}}} \right) = \frac{657}{\sqrt{1 - 0.996^2}}$$
(1)

(6) [10]

(ii)

$$\begin{pmatrix} l = l_0 \sqrt{1 - \frac{v^2}{c^2}} \\ 1.50 = l_0 \sqrt{1 - \frac{(1.00 \times 10^8)^2}{(3.00 \times 10^8)^2}} \\ l_0 = \frac{1.50}{0.943} = 1.59 \text{ m (1)}$$

M4.(a)

(i) $l = (vt = 1.00 \times 10^{\circ} \times 15 \times 10^{-9}) = 1.50 \text{ m}$ (1)

(b) (i)
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \left(1 \right) \left[\begin{array}{c} \text{or} \frac{m_0}{\sqrt{1 - \frac{(1.00 \times 10^8)^2}{(3.00 \times 10^8)^2}}} \right] \\ \left(\begin{array}{c} \text{or} \frac{m_0}{\sqrt{1 - \frac{(1.00 \times 10^8)^2}{(3.00 \times 10^8)^2}}} \right) \\ m \end{array} \right]$$

[or = $1.06 \times 1.67 \times 10^{-27}$ or 1.77×10^{-27} kg] (1) kinetic energy = $(m - m_0)c^2$ (1) [or = $0.06m_0c^2$ or $0.06 \times 1.67 \times 10^{-27} \times (3 \times 10^8)^2$] = 9.1×10^{-12} (J) (1)

(ii) total k.e. =
$$(10^7 \times 9.1 \times 10^{-12}) = 9.1 \times 10^{-5}$$
 (J) (1)
k.e. per second $\left(=\frac{9.1 \times 10^{-5}}{1.5 \times 10^{-9}}\right) = 6080W$

max 5

[8]

3