M1.(a) (i) electromagnetic / electrostatic / Coulomb (repulsion between the alpha particles and the nuclei) \checkmark

The interaction must be named not just described.

1

(ii) the scattering distribution remains the same (because the alpha particles interact with a nucleus) whose charge / proton number / atomic number remains the same or the (repulsive) force remains the same

> *The mark requires a described distribution and the reason for it.*

Or

the scattering distribution changes / becomes less distinct because there is a mixture of nuclear masses (which gives a mixture of nuclear recoils) ✓

(owtte)

A reference must be made to mass and not density or size.

1

- (b) (i) use of graph to find r_0 e.g. $r_0 = 6.0 \times 10^{-15} / 75^{1/3}$ (or 8.0×10^{-15} / $175^{1/3}$) $(r_0 = 1.43 \times 10^{-15} \text{ m})$ *Substitution and calculation t must be shown. Condone a gradient calculation on R against A1/3 graph (not graph in question) as R* \propto *A^{1/3}*
	- 27

(ii) **Escalate if clip shows 13Al in the question giving** $R \approx 4 \times 10^{-15}$ **m.**

(using $R = r_0 A \frac{1}{3}$) $R = 1.43 \times 10^{-15} \times 51^{1/3}$ $R = 5.3 \times 10^{-15}$ (m) \checkmark $(R = 5.2 \times 10^{-15} \text{ m from}$ r_0 = 1.4 × 10⁻¹⁵ m) *First mark for working. Second mark for evaluation which must be 2 or more sig figs allow CE from (i) R = 3.71 × (i). Possible escalation.*

(c) **Escalate if clip shows in the question and / or the use of 27 in the working.**

density = mass / volume $m = 51 \times 1.67 \times 10^{-27}$ $(= 8.5 \times 10^{-26}$ kg) *Give the first mark for substitution of data into the top line or bottom line of the calculation of density.* $v = 4/3\pi (5.3 \times 10^{-15})^3$ $(6.2(4) \times 10^{-43} \text{ m}^3)$ *In the second alternative the mark for the substitution is only given if the working equation is given as well.* Or density = $A \times u / 4/3\pi (r_0 A^{1/3})^3$ $=$ u /4/3π (r_0)³ *51 × 1.67 × 10-27 would gain a mark on its own but 1.66 ×* 10⁻²⁷ would need u / 4/3 $\pi(r_0)^3$ as well to gain the mark. top line = 1.66×10^{-27} bottom line = $4/3\pi$ (1.43 × 10⁻¹⁵)³ \checkmark for one substitution density = 1.4×10^{17} \checkmark (1.37×10^{17}) $kg m³$ ✓ *Expect a large spread of possible answers. For example If* $R = 5 \times 10^{-15}$ V = 5.24 $\times 10^{-43}$ and density = 1.63 $\times 10^{17}$. *Possible escalation.*

[8]

[1]

3

M2.B

 $30(1)$ $27 \quad \cdots$ **M3.** (a) 13 Al + $\alpha \rightarrow {}^{15}$ P + ${}^{(0)}$ n \checkmark

1

(b) kinetic energy lost by the α particle approaching the nucleus is equal to the potential energy gain \checkmark

$$
2.18 \times 10^{-12} = \frac{1}{4\pi \times 8.85 \times 10^{-12}} \times \frac{13 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}}{r}
$$

r = 2.75 × 10⁻¹⁶ (m) v

M4. (a)
$$
R = r_o A^{r/3} = 1.3 \times 10^{-5} \times (238)^{1/3}
$$
 (1)
= 8.0(6) × 10⁻¹⁵m (1)

(b) (use of inverse square law e.g.
$$
\frac{I_1}{I_2} = \left(\frac{x_1}{x_2}\right)^2
$$
 gives)

$$
10 = \left(\frac{x_2}{0.03}\right)^2 \quad (1)
$$

x = 0.095 m **(1)** (0.0949 m)

2

2

3

[4]

(c) (use *of A = A_{<i>o*}</sub>exp(– λ *t* gives) 0.85 = 1.0 exp (– λ 52) (1)

$$
\hat{\lambda} = \frac{1n(100/0.85)}{52}
$$

= 3.1(3) × 10⁻³s⁻¹ (1)

3

(d) it only emits *γ* rays **(1)** relevant properties of γ radiation e.g. may be detected outside the body/weak ioniser and causes little damage **(1)** it has a short enough half-life and will not remain active in the body after use **(1)** it has a long enough half-life to remain active during diagnosis **(1)** the substance has a toxicity that can be tolerated by the body **(1)** it may be prepared on site **(1)**

M5.(a) $(R^3 = R_0^3 A)$

plot R^{s} against A with axes labelled **(1)** units on axes **(1)** scales chosen to use more than 50% of page **(1)**

calculate data for table **(1)** plot data **(1)(1)** lose one mark for each error calculation of gradient

e.g. gradient = **(1)** (= 1.41 × 10–45 m³)

$$
r_0
$$
 (= gradient)^{1/3} (1)
= $(1.41 \times 10^{-45})^{1/3} = 1.1(2) \times 10^{-15}$ m (1)

alternative:

```
plot R against A^{\text{1/3}} with axes labelled (1)
units on axes (1) 
scales chosen to use more than 50% of page (1)
```


calculate data for table **(1)** plot data **(1)(1)** lose one mark for each error calculation of gradient

 6.72×10^{-15} e.g. gradient = 0.0 (1) = (1.1(2) × 10⁻⁴⁵ m³) r_0 = gradient **(1)** $= 1.1(2) \times 10^{-15}$ m (1) [or plot ln*R* against ln*A*...]

(max 8)

(b) assuming the nucleus is spherical ignoring the gaps between nucleons assuming all nuclei have same density assuming total mass is equal to mass of constituent nucleus any one assumption **(1)**

$$
M = \frac{4}{3} \pi R^3 \rho (1)
$$

$$
\left(\therefore M = \frac{4}{3} \pi R_0^3 a \rho\right)
$$

$$
\left(\therefore \rho = \frac{3m}{4\pi R_0^3}\right) = \frac{3 \times 1.67 \times 10^{-27}}{4\pi \times (1.12 \times 10^{-15})^3}
$$
 (1)

 $= 2.8 \times 10^{17}$ kg m⁻³ (1)

(4) [12]