M1.(a) (i) electromagnetic / electrostatic / Coulomb (repulsion between the alpha particles and the nuclei) ✓

The interaction must be named not just described.

(ii) the scattering distribution remains the same (because the alpha particles interact with a nucleus) whose charge / proton number / atomic number remains the same or the (repulsive) force remains the same

The mark requires a described distribution <u>and the reason</u> for it.

Or

the scattering distribution changes / becomes less distinct because there is a mixture of nuclear $\underline{\text{masses}}$ (which gives a mixture of nuclear recoils) \checkmark (owtte)

A reference must be made to mass and not density or size.

(b) (i) use of graph to find r_0 e.g. $r_0 = 6.0 \times 10^{-15} / 75^{1/3}$

(or 8.0 ×
$$10^{-15}$$
 / $175^{1/3}$)
($r_0 = 1.43 \times 10^{-15}$ m)

Substitution and calculation t must be shown.

Condone a gradient calculation on <u>R against A</u>^{1/3} graph (not graph in question) as $R \propto A^{1/3}$

(ii) Escalate if clip shows 13Al in the question giving $R \approx 4 \times 10^{-15}$ m.

(using
$$R = r_0 A^{1/3}$$
)
 $R = 1.43 \times 10^{-15} \times 51^{1/3}$ \checkmark
 $R = 5.3 \times 10^{-15}$ (m) \checkmark
($R = 5.2 \times 10^{-15}$ m from $r_0 = 1.4 \times 10^{-15}$ m)

First mark for working.

Second mark for evaluation which must be 2 or more sig figs allow CE from (i) $R = 3.71 \times (i)$.

Possible escalation.

2

1

1

1

(c) Escalate if clip shows 13 in the question and / or the use of 27 in the working.

```
density = mass / volume

m = 51 \times 1.67 \times 10^{-27}

(= 8.5 × 10<sup>-26</sup> kg)
```

Give the first mark for substitution of data into the top line or bottom line of the calculation of density.

$$v = 4/3\pi (5.3 \times 10^{-15})^3$$

(6.2(4) × 10⁻⁴³ m³)

In the second alternative the mark for the substitution is only given if the working equation is given as well.

Or

density =
$$A \times u / 4/3\pi (r_0 A^{1/3})^3$$

= $u / 4/3\pi (r_0)^3$

 $51 \times 1.67 \times 10^{-27}$ would gain a mark on its own but 1.66×10^{-27} would need u / $4/3 \pi (r_0)^3$ as well to gain the mark.

top line = 1.66×10^{-27}

bottom line = $4/3\pi (1.43 \times 10^{-15})^3$

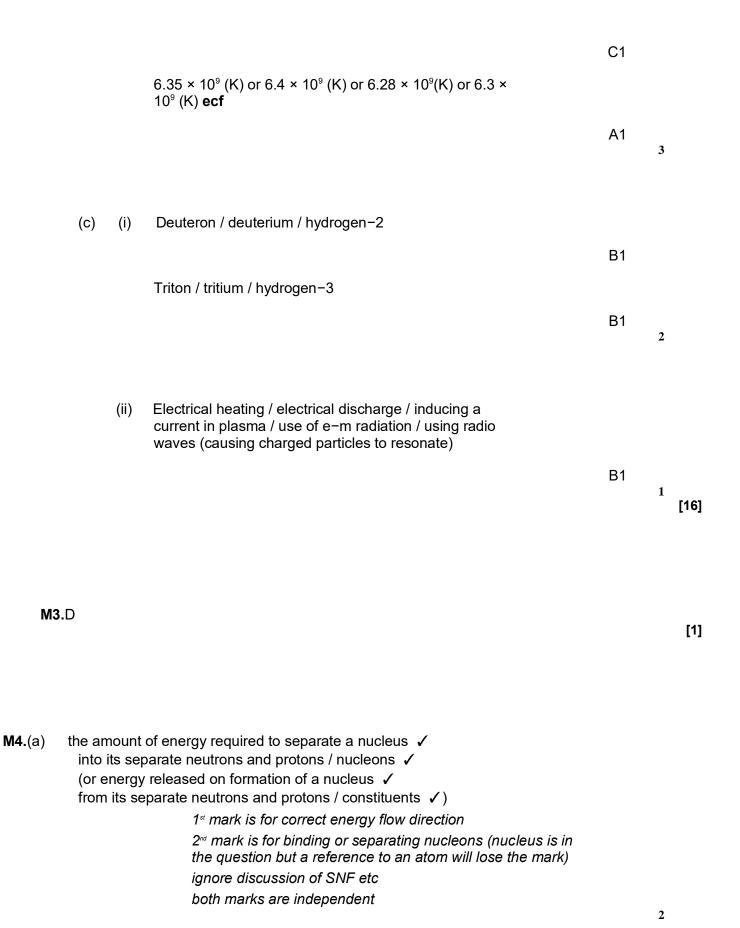
✓ for one substitution

density =
$$1.4 \times 10^{17}$$
 \checkmark (1.37 × 10¹⁷) kg m⁻³ \checkmark

Expect a large spread of possible answers. For example If $R = 5 \times 10^{-15} \text{ V} = 5.24 \times 10^{-43}$ and density = 1.63 × 10⁻¹⁷.

Possible escalation.

[8]


3

M2.(a) (i) (Mass change in u=) 1.71×10^{-3} (u) **or** (mass Be-7) – (mass He-3) – (mass He-4) seen with numbers

C1

C1

Substitution in $E = mc^2$ condone their mass <u>difference</u> in this sub but must have correct value for c² $(3\times10^8)^2$ or 9×10^{16} Alternative 3rd mark: Allow their MeV converted to joules (\times 1.6 \times 10⁻¹³) **seen** C1 2.55×10^{-13} (J) to 2.6×10^{-13} (J) Alternative 4th mark: Allow 2.5×10^{-13} (J) for this method Α1 (ii) Use of *E=hc / λ* ecf C1 Correct substitution in rearranged equation with λ subject ecf C1 7.65×10^{-13} (m) to 7.8×10^{-13} (m) ecf Α1 3 (b) (i) Use of E_p formula: C1 Correct charges for the nuclei and correct powers of 10 C1 $2.6(3) \times 10^{-13} \text{ J}$ Α1 3 Uses KE = 3/2 kT: **or** halves KE_T, KE= 1.3×10^{-13} (J) (ii) seen ecf C1 Correct substitution of data and makes T subject ecf Or uses KE_T value **and** divides T by 2

Page 5

(b) (i) $2_0^1 \mathbf{n}$ or $_0^1 \mathbf{n} + _0^1 \mathbf{n}$ must see subscript and superscripts

> (ii) binding energy of U = 235 × 7.59 ✓ (= 1784 (MeV)) binding energy of Tc and In = 112 × 8.36 + 122 × 8.51 ✓ (= 1975 (MeV))energy released (= 1975 – 1784) = 191 (MeV) ✓ (allow 190 MeV) 1st mark is for 235 × 7.59 seen anywhere 2^{m} mark for 112 × 8.36 + 122 × 8.51 or 1975 is only given if there are no other terms or conversions added to the equation (ignore which way round the subtraction is positioned)

correct final answer can score 3 marks

(iii) energy released $= 191 \times 1.60 \times 10^{-13}$ $(= 3.06 \times 10^{-11} \text{ J})$ loss of mass $(= E/c^2)$ $= 2.91 \times 10^{-11} / (3.00 \times 10^8)^2$ $= 3.4 \times 10^{-28} \text{ (kg)} \checkmark$ $= 191 / 931.5 u \checkmark (= 0.205 u)$ $= 0.205 \times 1.66 \times 10^{-27}$ (kg) $= 3.4 \times 10^{-28} \text{ (kg)} \checkmark$ allow CE from (ii) working must be shown for a CE otherwise full marks can be given for correct answer only note for CE answer = (ii) $\times 1.78 \times 10^{-30}$ $(2.01 \times 10^{-27} \text{ is a common answer})$

line or band from origin, starting at 45° up to Z approximately = 20 (c) (i) reading Z = 80, $N = 110 \rightarrow 130$

> initial gradient should be about 1 (ie Z = 20; $N = 15 \rightarrow 25$) and overall must show some concave curvature. (Ignore slight waviness in the line) if band is shown take middle as the line

if line stops at N > 70 extrapolate line to N = 80 for marking

1

2

1

3

(ii) fission fragments are (likely) to be above / to the left of the line of stability

fission fragments are (likely) to have a larger N / Z ratio than stable nuclei or
fission fragments are neutron rich owtte

and become neutron or β- emitters

ignore any reference to α emission
a candidate must make a choice for the first two marks
stating that there are more neutrons than protons is not
enough for a mark

1st mark reference to graph
2nd mark − high N / Z ratio or neutron rich
3nd mark beta minus

note not just beta

3

[12]