[1]

M2.(a) emf = Δ (BAN) / t Change in flux = $A \times \Delta B$ or $12 \times (23 - 9)$ seen

C1

Substitution ignoring powers of 10

C1

1.2 V

Α1

3

(b) Reduced

M0

Magnet will move (with the case)

Α1

Increased

M0

Flux <u>linkage increases</u> or emf is proportional to N

A1

2

(c) (i) Formula used $\frac{4\pi^2 \times 8 \times 10^{-3}}{2.6}$ seen

В1

0.348 / 0.349 seen to at least 3 sf

В1

Page 2

(ii) Period consistent at 0.35 s or $V_o = 8 \text{ V}$

B1

Shape shows decreasing amplitude

M1

At least 3 cycles starting at 8 V

Α1

[10]

3

M3.C

[1]

M4.D

[1]

M5.(a) (i) elastic potential energy **and** gravitational potential energy ✓

For elastic pe allow "pe due to tension", or "strain energy" etc.

1

2

2

2

3

(ii) sinusoidal curve of period 0.80 s ✓
 – cosine curve starting at t = 0 continuing to t = 1.2s ✓
 For 1st mark allow ECF from T value given in (i).

(c) (i) use of $T = \frac{2\pi\sqrt{\frac{m}{k}}}{9}$ gives $0.80 = \frac{2\pi\sqrt{\frac{0.35}{k}}}{\sqrt{k}}$ $k \left(= \frac{4\pi^2 \times 0.35}{0.80^2} \right) = 22 (21.6)$ N m⁻¹ ✓

> Unit mark is independent: insist on N m^{-1} . Allow ECF from wrong T value from (i): use of 0.40s gives 86.4 (N m^{-1}).

(ii) maximum ke = $(\frac{1}{2} m v_{max}^{2})$ = 2.0 × 10⁻² gives

$$v_{\text{max}}^2 = \frac{2.0 \times 10^{-2}}{0.5 \times 0.35}$$
 \checkmark (= 0.114 m²s⁻²) and $v_{\text{max}} = 0.338$ (m s⁻¹) \checkmark

$$v_{\text{max}} = 2\pi f A \text{ gives } A = \frac{0.338}{2\pi \times 1.25} \checkmark$$

and $A = 4.3(0) \times 10^{-2} \,\text{m}$ / i.e. about 40 mm

[or maximum ke = $(\frac{1}{2} m v_{max}^2)$ = $\frac{1}{2} m (2\pi f A)^2$ $\frac{1}{2} \times 0.35 \times 4\pi^2 \times 1.25^2 \times A^2 = 2.0 \times 10^{-2}$

$$\therefore A^2 = \frac{2 \times 2.0 \times 10^{-2}}{4\pi^2 \times 0.35 \times 1.25^2} \checkmark (= 1.85 \times 10^{-3})$$

and $A = 4.3(0) \times 10^{-2} \text{ m}$ i.e. about 40 mm] [or maximum ke = maximum pe = 2.0×10^{-2} (J) maximum pe = $\frac{1}{2} k A^2$ \checkmark $\therefore 2.0 \times 10^{-2} = \frac{1}{2} \times 21.6 \times A^2$ \checkmark

from which
$$A^2 = \frac{2 \times 2.0 \times 10^{-2}}{21.6}$$
 \checkmark (= 1.85 × 10⁻³)

and $A = 4.3(0) \times 10^{-2} \,\text{m}$ / i.e. about 40 mm]

First two schemes include recognition that f = 1 / T i.e. f = 1 / 0.80 = 1.25 (Hz).

Allow ECF from wrong T value from (i) -0.40sgives $A = 2.15 \times 10^{-2}$ m but mark to max 3.

Allow ECF from wrong k value from (i) -86.4Nm⁻¹ gives $A = 2.15 \times 10^{-2}$ m but mark to max 3.

[14]

M6.A

[1]

M7.C

[1]

M8.(a) acceleration is proportional to displacement (from equilibrium) \checkmark

Acceleration proportional to negative displacement is 1st mark only.

acceleration is in opposite direction to displacement or towards a fixed point / equilibrium

Don't accept "restoring force" for accln.

position 🗸

2

(b) (i)
$$f\left(=\frac{1}{2\pi}\sqrt{\frac{g}{l}}\right) = \frac{1}{2\pi}\sqrt{\frac{9.81}{0.984}} \quad \checkmark = 0.503 (0.5025) \text{ (Hz)} \quad \checkmark$$

3SF is an independent mark.

[or
$$T \left(= 2\pi \sqrt{\frac{l}{g}} \right) = 2\pi \sqrt{\frac{0.984}{9.81}} \checkmark (= 1.9(90) (s))$$

When g = 9.81 is used, allow either 0.502 or 0.503 for 2^{-1} and 3^{-1} marks.

$$f\left(=\frac{1}{T}\right) = \frac{1}{1.990} = 0.503 (0.5025) \text{ (Hz)}$$

Use of g = 9.8 gives 0.502 Hz: award only 1 of first 2 marks if quoted as 0.502, 0.503 0.50 or 0.5 Hz.

answer to 3SF 🗸

3

(ii)
$$a(=-(2\pi f)^2x)=(-)(2\pi \times 0.5025)^2 \times 42 \times 10^{-3} \checkmark$$

Allow ECF from any incorrect f from (b)(i).

= 0.42 (0.419) (m s⁻²)
$$\checkmark$$

2

(c) recognition of 20 oscillations of (shorter) pendulum

and / or 19 oscillations of (longer) pendulum ✓

Explanation: difference of 1 oscillation or phase change of 2 #

or $\Delta t = 0.1$ so n = 2 / 0.1 = 20, or other acceptable point \checkmark

time to next in phase condition = 38 (s) ✓

Allow "back in phase (for the first time)" as a valid explanation.

[or
$$(T = 1.90 \text{ s so}) (n + 1) \times 1.90 = n \times 2.00 \checkmark$$

gives n = 19 (oscillations of longer pendulum) \checkmark

minimum time between in phase condition = 19 × 2.00 = 38 (s) ✓]

[10]

3

M9.(a) (i) correct period read from graph or use of f=1/T 0.84±0.01

C1

2.4 Hz gets C1

correct frequency 1.2 (1.18 - 1.25 to 3 sf)

A1

(ii) correct shape (inverse)

B1

Crossover PE = KE

В1

C1

48.7 (49) m

A1

(ii) $v = 120\ 000\ /\ 3600 = 33(.3)\ m\ s^{-1}$

B1

Use of $F = m v^2/r$ (allow v in km h⁻¹)

В1

Total tension = $6337 + (280 \times 9.81) = 9.083 \times 10^{3} \text{ N}$ Allow their central force

B1

Divide by 4 2.27×10^{3} N Allow their central force

B1

(iii) $mgh = \frac{1}{2} mv^2$

B1

Condone: Use of $v = 2\pi fA$ (max2)

 $9.8 \times 44 = 0.5 \, \text{V}^2$ Allow 45 in substitution

В1

Condone 22 m s⁻¹

29.4 m s^{-1} (Use of 45 gives 29.7)

B1

106 km h⁻¹ (their m s⁻¹ correctly converted) Or compares with 33 m s⁻¹

			B1	
	(iv)	1/16 th (0.625) % of KE left if correct		
			M1	
		Allow 1/8 (0.125)or 1/32(0.313)		
		KE at start = 5.6 × 10⁴ J or states energy ∝ speed² so speed is ½		
		Allow for correct sub ⁿ $E = \frac{1}{2} 280 \times 20^{n} \text{ x factor from incorrect}$ number of swings calculated correctly	M1	
		Final speed calculated = 5 m s ⁻¹		
			A 1	
		Must be from correct working		[17]
B44.0 A				
M10. A				[1]
M11. B				
				[1]
M12.	Α			
				[1]
M13.	Α			
				[1]