Q1.Figure 1 shows a circuit that includes an ideal operational amplifier. A student uses this circuit to amplify the signal from the sensor before further processing by the system.

Figure 1

(a)	Point X in Figure '	is said to be a virtual	earth.
-----	---------------------	-------------------------	--------

Explain the meaning of the term virtual earth in this type of circuit.	
	(2)

(b) The temperature sensor produces a signal that changes by 10 mV for every degree Celsius change in temperature. The signal is 0 mV when the temperature of the sensor is 0 °C

The value of R_i is 22 k Ω and the value of R_f is 270 k Ω .

Calculate the output voltage V_{OUT} of the circuit in **Figure 1** when the sensor is at a temperature of 50 °C.

$$V_{OUT} =V$$
 (2)

(c)	The circuit is powered by a -15 V - 0 - +15 V supply. Explain why this circuit will not detect temperatures above 122 $^{\circ}$ C.	
		(0)
		(2)
(d)	A student suggests a modification to the circuit in Figure 1 to form a difference	

amplifier circuit for a thermostat. The modified circuit is shown in Figure 2.

Figure 2

The output controls a circuit that switches the heater off when the output is positive.

Explain how this circuit operates so that the heater switches off when the temperature reaches a pre-determined level.	
	(3)
	(Total 9 marks)

Q2.Figure 1 shows the circuit of a summing amplifier which uses an operational amplifier with negative feedback. The power supply to the operational amplifier is ±12 V.

(a)	(1)	above circuit.		
	(ii)	Give two reasons for using negative feedback in an amplifier.		

The input voltages to the amplifier in part (a), V_1 and V_2 , vary with time according to (b) the graphs shown in **Figure 2**. Given that R_1 = 40 k Ω , R_2 = 20 k Ω and R_f = 40 k Ω show on the third set of axes the variation of $V_{\mbox{\tiny out}}$ with time. Indicate values of $V_{\mbox{\tiny out}}$ on the axis.

(4)

(4) (Total 8 marks)

Q3.

In the circuit shown, an input of $\pm 1.2~V$ is applied simultaneously to each of the inputs A, B and C.

(a)	Determine the current flowing through each of the input resistors and mark on the diagram the direction of each current.		
(b)	Determine the value of the output voltage, $V_{\rm out}$, if R _f = 10 k Ω .		
(c)	If R_{\scriptscriptstylef} is changed to a resistor of 20 k Ω state, with a reason, the value of $V_{\scriptscriptstyleout}$.		

(Total 6 marks)