Q1.Figure 1 shows a circuit that includes an ideal operational amplifier. A student uses this circuit to amplify the signal from the sensor before further processing by the system. Figure 1 | (a) | Point X in Figure ' | is said to be a virtual | earth. | |-----|---------------------|-------------------------|--------| |-----|---------------------|-------------------------|--------| | Explain the meaning of the term virtual earth in this type of circuit. | | |--|-----| | | | | | | | | (2) | (b) The temperature sensor produces a signal that changes by 10 mV for every degree Celsius change in temperature. The signal is 0 mV when the temperature of the sensor is 0 °C The value of R_i is 22 k Ω and the value of R_f is 270 k Ω . Calculate the output voltage V_{OUT} of the circuit in **Figure 1** when the sensor is at a temperature of 50 °C. $$V_{OUT} =V$$ (2) | (c) | The circuit is powered by a -15 V - 0 - +15 V supply. Explain why this circuit will not detect temperatures above 122 $^{\circ}$ C. | | |-----|---|-----| | | | | | | | | | | | | | | | (0) | | | | (2) | | | | | | (d) | A student suggests a modification to the circuit in Figure 1 to form a difference | | amplifier circuit for a thermostat. The modified circuit is shown in Figure 2. Figure 2 The output controls a circuit that switches the heater off when the output is positive. | Explain how this circuit operates so that the heater switches off when the temperature reaches a pre-determined level. | | |--|-----------------| | | | | | | | | | | | | | | (3) | | | (Total 9 marks) | Q2.Figure 1 shows the circuit of a summing amplifier which uses an operational amplifier with negative feedback. The power supply to the operational amplifier is ±12 V. | (a) | (1) | above circuit. | | | |-----|------|--|--|--| (ii) | Give two reasons for using negative feedback in an amplifier. | | | | | | | | | | | | | | | The input voltages to the amplifier in part (a), V_1 and V_2 , vary with time according to (b) the graphs shown in **Figure 2**. Given that R_1 = 40 k Ω , R_2 = 20 k Ω and R_f = 40 k Ω show on the third set of axes the variation of $V_{\mbox{\tiny out}}$ with time. Indicate values of $V_{\mbox{\tiny out}}$ on the axis. (4) |
 |
 | | |------|------|--| | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | | | |
 |
 | | | | | | (4) (Total 8 marks) Q3. In the circuit shown, an input of $\pm 1.2~V$ is applied simultaneously to each of the inputs A, B and C. | (a) | Determine the current flowing through each of the input resistors and mark on the diagram the direction of each current. | | | |-----|---|--|--| (b) | Determine the value of the output voltage, $V_{\rm out}$, if R _f = 10 k Ω . | (c) | If R_{\scriptscriptstylef} is changed to a resistor of 20 k Ω state, with a reason, the value of $V_{\scriptscriptstyleout}$. | | | (Total 6 marks)