AS Pure Mathematics 8MAO: Specimen Paper 1 Mark Scheme

Question	Scheme	Marks	AOs
1 (a)	$y = 2x^3 - 2x^2 - 2x + 8 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 4x - 2$	M1 A1	1.1b 1.1b
		(2)	
(b)	Attempts $6x^2 - 4x - 2 > 0 \implies (6x + 2)(x - 1) > 0$	M1	1.1b
	$x = -\frac{1}{3}, 1$	A1	1.1b
	Chooses outside region	M1	1.1b
	$\left\{x:x<-\frac{1}{3}\right\}\cup\left\{x:x>1\right\}$	A1	2.5
		(4)	
		(6 n	narks)
Notes:			
(a) M1: Attemp	ots to differentiate. Allow for two correct terms un-simplified		
A1: $\frac{dy}{dx} =$	$=6x^2-4x-2$		
(b)			
M1: Attemp	ots to find the critical values of their $\frac{dy}{dx} > 0$ or their $\frac{dy}{dx} = 0$		
A1: Correct	critical values $x = -\frac{1}{3}, 1$		
	es the outside region		
A1: $\begin{cases} x : x < x \end{cases}$	$\left\{x = \frac{1}{3}\right\} \cup \left\{x : x > 1\right\} \text{ or } \left\{x : x \in \mathbb{R} \mid x < -\frac{1}{3} \text{ or } x > 1\right\}$		
Accept	also $\left\{x:x,,-\frac{1}{3}\right\}\cup\left\{x:x1\right\}$		

Question	Scheme	Marks	AOs
2 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = 6\mathbf{i} - 3\mathbf{j} - (4\mathbf{i} + 2\mathbf{j})$	M1	1.1b
	=2i-5j	A1	1.1b
		(2)	
1(b)	Explains that \overrightarrow{OC} is parallel to \overrightarrow{AB} as $8\mathbf{i} - 20\mathbf{j} = 4 \times (2\mathbf{i} - 5\mathbf{j})$	M1	1.1b
	As $\overrightarrow{OC} = 4 \times \overrightarrow{AB}$ it is parallel to it and not the same length Hence $OABC$ is a trapezium.	A1	2.4
		(2)	
		(4 n	narks)
Notes:			
(a) M1: Attemp A1: 2i – 5j	ots $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or equivalent. This may be implied by one correct co	mponent	
(b)	\longrightarrow \longrightarrow		
A1: Fully ex	ots to compare vectors \overrightarrow{OC} and \overrightarrow{AB} by considering their directions splains why $OABC$ is a trapezium. (The candidate is required to state the same length as it.)	at <i>OC</i> is pa	rallel

Question	Scheme	Marks	AOs
3 (a)	Uses or implies that $V = at + b$	B1	3.3
	Uses both $4 = 24a + b$ and $2.8 = 60a + b$ to get either a or b	M1	3.1b
	Uses both $4 = 24a + b$ and $2.8 = 60a + b$ to get both a and b	M1	1.1b
	$\Rightarrow V = -\frac{1}{30}t + 4.8$	A1	1.1b
		(4)	
(b)	(i) States that the initial volume is 4.8 m ³	B1 ft	3.4
	(ii) Attempts to solve $0 = -\frac{1}{30}t + 4.8$	M1	3.4
	States 144 minutes	A1	1.1b
		(3)	
(c)	 States any logical reason The tank will leak more quickly at the start due to the greater water pressure The hole will probably get larger and so will start to leak more quickly Sediment could cause the leak to be plugged and so the tank would not empty. 	B1	3.5b
		(1)	
	·	(8 n	narks)
Notes:			
You may av M1: Award 4 = 24a + b may just see M1: Uses 4 A1: $V = -\frac{2}{3}$ (b)(i) B1ft: Follow (b)(ii)	The implies that $V = at + b$ word this at their final line but it must be $V = f(t)$ ded for translating the problem in context and starting to solve. It is score and $2.8 = 60a + b$ are written down and the candidate proceeds to find e e a line $\pm \frac{4-2.8}{60-24}$ k = 24a + b and $2.8 = 60a + b$ to find both a and b $\frac{1}{50}t + 4.8$ or exact equivalent. Eg $30V + t = 144$ w through on their 'b' that $V = 0$ and finds t by attempting to solve their $0 = -\frac{1}{30}t + 4.8$		
A1: States 1			
(c)			

Question	Scheme	Marks AO
4(a)	(4,-3)	B1 1.2
		(1)
(b)	x = 6	B1 1.11
		(1)
(c)	<i>x</i> ,, 4	B1 1.11
		(1)
(d)	k >1.5	B1 2.2a
		(1)
	·	(4 marks
Notes:		
See m/sche	me	

Question	Scheme	Marks	AOs
5(a)	$f(-3) = (-3)^3 + 3 \times (-3)^2 - 4 \times (-3) - 12$	M1	1.1b
	$f(-3) = 0 \Rightarrow (x+3)$ is a factor \Rightarrow Hence $f(x)$ is divisible by $(x+3)$.	A1	2.4
		(2)	
(b)	$x^{3} + 3x^{2} - 4x - 12 = (x+3)(x^{2} - 4)$	M1	1.1b
	=(x+3)(x+2)(x-2)	dM1	1.1b
		A1	1.1b
		(3)	
(c)	$\frac{x^3 + 3x^2 - 4x - 12}{x^3 + 5x^2 + 6x} = \frac{\dots}{x(x^2 + 5x + 6)}$	M1	3.1a
	$=\frac{(x+3)(x+2)(x-2)}{x(x+3)(x+2)}$	dM1	1.1b
	$=\frac{(x-2)}{x}=1-\frac{2}{x}$	A1	2.1
		(3)	
		(8 n	narks)
Notes:			
(b) M1: Attemp	tots $f(-3)$ we $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is division but to divide by $(x+3)$ to get the quadratic factor. ision look for the first two terms. ie $x^2 + 0x$ $x+3)\frac{x^2 \pm 0x}{x^3 + 3x^2 - 4x - 12}$	ble by (x-	+3).
By insp	ection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)$	±4)	
	n attempt at factorising their $(x^2 - 4)$. (Need to check first and last terms		
	(x+3)(x+2)(x-2)	,	
(c) M1: Takes	a common factor of x out of the denominator and writes the numerator in atively rewrites to $x^3 + 3x^2 - 4x - 12 = A(x^3 + 5x^2 + 6x) + B(x^2 + 5x + 6)$		
	er factorises the denominator and cancels	,	
	natively compares terms or otherwise to find either A or B		
A1: Shows	that $\frac{x^3 + 3x^2 - 4x - 12}{x^3 + 5x^2 + 6x} = 1 - \frac{2}{x}$ with no errors or omissions		

In the alternative there must be a reference to

5

$$x^{3} + 3x^{2} - 4x - 12 \equiv 1 \left(x^{3} + 5x^{2} + 6x \right) - 2 \left(x^{2} + 5x + 6 \right) \text{ and hence } \frac{x^{3} + 3x^{2} - 4x - 12}{x^{3} + 5x^{2} + 6x} = 1 - \frac{2}{x}$$

Question	Scheme	Marks	AOs
6(i)	Tries at least one value in the interval Eg $4^2 - 4 - 1 = 11$	M1	1.18
	States that when $n = 8$ it is FALSE and provides evidence $8^2 - 8 - 1 = 55 = (11 \times 5)$ Hence NOT PRIME	A1	2.4
		(2)	
(ii)	Knows that an odd number is of the form $2n+1$	B1	3.1
	Attempts to simplify $(2n+1)^3 - (2n+1)^2$	M1	2.1
	and factorise $8n^3 + 8n^2 + 2n = 2(4n^3 + 4n^2 + 1n) =$	dM1	1.1
	with statement $2 \times$ is always even	A1	2.4
		(4)	
Alt (ii)	Let the odd number be 'n' and attempts $n^3 - n^2$	B1	3.1
	Attempts to factorise $n^3 - n^2 = n^2 (n-1)$	M1	2.1
	States that n^2 is odd (odd × odd) and $(n-1)$ is even (odd -1)	dM1	1.1
	States that the product is even (odd×even)	A1	2.4
		(6 n	narks

(i)

M1: Attempts any $n^2 - n - 1$ for *n* in the interval. It is acceptable just to show $8^2 - 8 - 1 = 55$ A1: States that when n = 8 it is FALSE and provides evidence. A comment that $55 = 11 \times 5$ and hence not prime is required

(ii)

See scheme for two examples of proof

Note that Alt (i) works equally well with an odd number of the form 2n-1

Question	Scheme	Marks	AOs
7 (a)	$\left(1+\frac{3}{x}\right)^2 = 1+\frac{6}{x}+\frac{9}{x^2}$	M1 A1	1.1b 1.1b
		(2)	
(b)	$\left(1+\frac{3}{4}x\right)^{6} = 1+6 \times \left(\frac{3}{4}x\right) + \dots$	B1	1.1b
	$\left(1 + \frac{3}{4}x\right)^{6} = 1 + 6 \times \left(\frac{3}{4}x\right) + \frac{6 \times 5}{2} \times \left(\frac{3}{4}x\right)^{2} + \frac{6 \times 5 \times 4}{3 \times 2} \times \left(\frac{3}{4}x\right)^{3} + \dots$	M1 A1	1.1b 1.1b
	$=1+\frac{9}{2}x+\frac{135}{16}x^2+\frac{135}{16}x^3+\dots$	A1	1.1b
		(4)	
(c)	$\left(1+\frac{3}{x}\right)^2 \left(1+\frac{3}{4}x\right)^6 = \left(1+\frac{6}{x}+\frac{9}{x^2}\right) \left(1+\frac{9}{2}x+\frac{135}{16}x^2+\frac{135}{16}x^3+\dots\right)$		
	Coefficient of $x = \frac{9}{2} + 6 \times \frac{135}{16} + 9 \times \frac{135}{16} = \frac{2097}{16}$	M1 A1	2.1 1.1b
		(2)	
		(8 n	narks)
Notes:			
	$\operatorname{pts}\left(1+\frac{3}{x}\right)^2 = A + \frac{B}{x} + \frac{C}{x^2}$ $\frac{3}{x}\right)^2 = 1 + \frac{6}{x} + \frac{9}{x^2}$		
M1: Attemp least once in A1: Binomi	o terms correct, may be un-simplified ots the binomial expansion. Implied by the correct coefficient and power a term 3 or 4 al expansion correct and un-simplified al expansion correct and simplified.	of <i>x</i> seen a	at
(c)	nes all relevant terms for their $\left(1 + \frac{A}{x} + \frac{B}{x^2}\right)\left(1 + Cx + Dx^2 + Ex^3 +\right)$ to find	nd the	
coefficient of A1: Fully co	of x.		

7

PMT

Question	Scheme	Marks	AOs
8(a)	(i) $\int_{1}^{a} \sqrt{8x} dx = \sqrt{8} \times \int_{1}^{a} \sqrt{x} dx = 10\sqrt{8} = 20\sqrt{2}$	M1 A1	2.2a 1.1b
	(ii) $\int_{0}^{a} \sqrt{x} dx = \int_{0}^{1} \sqrt{x} dx + \int_{1}^{a} \sqrt{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{1} + 10 = \frac{32}{3}$	M1 A1	2.1 1.1b
		(4)	
(b)	$R = \int_{1}^{a} \sqrt{x} \mathrm{d}x = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{a}$	M1 A1	1.1b 1.1b
	$\frac{2}{3}a^{\frac{3}{2}} - \frac{2}{3} = 10 \Longrightarrow a^{\frac{3}{2}} = 16 \Longrightarrow a = 16^{\frac{2}{3}}$	dM1	3.1a
	$\Rightarrow a = 2^{4 \times \frac{2}{3}} = 2^{\frac{8}{3}}$	Al	2.1
		(4)	
Notes:		(8 n	narks)
(a)(ii) M1: For ide A1: For $\frac{32}{3}$	entifying and attempting to use $\int_{0}^{a} \sqrt{x} dx = \int_{0}^{1} \sqrt{x} dx + \int_{1}^{a} \sqrt{x} dx$ or exact equivalent		
A1: $\int_1^a $	but to integrate, $x^{\frac{1}{2}} \rightarrow x^{\frac{3}{2}}$ $\overline{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{a}$		
limits and p	whole strategy to find <i>a</i> . In the scheme it is awarded for setting $\left[\dots x^{\frac{3}{2}} \right]_{1}^{a}$ roceeding using correct index work to find <i>a</i> . Alternatively a candidate c uch a case it is awarded for setting $\left[\dots x^{\frac{3}{2}} \right]^{2^{k}} = 10$, using both limits and p	ould assun	ne
	x work to $k=$		
	ative case, a further statement must be seen following $k = \frac{8}{3}$ Hence Tru	e	

8

PMT

Question	Scheme	Marks	AOs		
9	$2\log_4(2-x) - \log_4(x+5) = 1$				
	Uses the power law $\log_4 (2-x)^2 - \log_4 (x+5) = 1$	M1	1.1b		
	Uses the subtraction law $\log_4 \frac{(2-x)^2}{(x+5)} = 1$	M1	1.1b		
	$\frac{(2-x)^2}{(x+5)} = 4 \rightarrow 3\text{TQ in } x$	dM1	3.1a		
	$x^2 - 8x - 16 = 0$	A1	1.1b		
	$(x-4)^2 = 32 \Longrightarrow x =$	M1	1.1b		
	$x = 4 - 4\sqrt{2}$ oe only	A1	2.3		
		(6)			
		(6 n	narks)		
Notes:					
M1: Uses th	he power law of logs $2\log_4(2-x) = \log_4(2-x)^2$				
M1: Uses th	he subtraction law of logs following the above $\log_4(2-x)^2 - \log_4(x+5) = \log_4(x+5)$	$\mathbf{g}_4 \frac{\left(2-x\right)^2}{\left(x+5\right)}$			
Alternativel	Alternatively uses the addition law following use of $1 = \log_4 4$ That is $1 + \log_4 (x+5) = \log_4 4(x+5)$				
correct use of	dM1: This can be awarded for the overall strategy leading to a $3TQ$ in x . It is dependent upon the correct use of both previous M's and for undoing the logs to reach a $3TQ$ equation in x				
	A1: For a correct equation in x M1: For the correct method of solving their $3TQ = 0$				
	$-4\sqrt{2}$ or exact equivalent only. (For example accept $x = 4 - \sqrt{32}$)				

Question	Scheme	Marks	AOs
10(a)	Attempts to find the radius $\sqrt{(2-2)^2+(5-3)^2}$ or radius ²	M1	1.1b
	Attempts $(x-2)^{2} + (y-5)^{2} = 'r^{2}$	M1	1.1b
	Correct equation $(x-2)^{2} + (y-5)^{2} = 20$	A1	1.1b
		(3)	
(b)	Gradient of radius <i>OP</i> where <i>O</i> is the centre of $C = \frac{5-3}{2-2} = \left(\frac{1}{2}\right)$	M1	1.1b
	Equation of <i>l</i> is $-2 = \frac{y-3}{x+2}$	dM1	3.1a
	Any correct form $y = -2x - 1$	A1	1.1b
	Method of finding k Substitute $x=2$ into their $y=-2x-1$	M1	2.1
	k = -5	A1	1.1b
		(5)	
		(8 n	narks)
Notes:			
A1: For a co If students u A1: $x^2 + y^2$ (b) M1: Attempt	eme or substitutes $(-2,3)$ into $(x-2)^2 + (y-5)^2 = r^{2}$ prect equation use $x^2 + y^2 + 2fx + 2gy + c = 0$ M1: $f = 2, g = 5$ M1: substitutes (2,5) the $x^2 - 4x - 10y + 9 = 0$ puts to find the gradient of <i>OP</i> where <i>O</i> is the centre of <i>C</i> a complete strategy of finding the equation of <i>l</i> using the perpendicular generative (-2,3)		
	rrect form of l Eg $y = -2x - 1$		
their $y = -2$ A1: $k = -5$ Alt using P M1: Attemp dM1: For their k	for the key step of finding k. In this method they are required to substitut $x-1$ and solve for k. ythagoras' theorem ots Pythagoras to find both PQ and OQ in terms of k (where O is centre of the complete strategy of using Pythagoras theorem on triangle POQ to form	of <i>C</i>)	
	for a correct attempt to solve their quadratic to find k.		

Question	Scheme	Marks	AOs
11(i)	$(2\theta + 10^\circ) = \arcsin(-0.6)$	M1	1.1b
	$(2\theta+10^\circ) = -143.13^\circ, -36.87^\circ, 216.87^\circ, 323.13^\circ$ (Any two)	A1	1.1b
	Correct order to find $\theta = \dots$	dM1	1.1b
	Two of $\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}.$	A1	1.1b
	$\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}, \text{ only}$	A1	2.1
		(5)	
(ii)	(a) Explains that the student has not considered the negative value of $x(=-29.0^{\circ})$ when solving $\cos x = \frac{7}{8}$	B1	2.3
	Explains that the student should check if any solutions of $\sin x = 0$ (the cancelled term) are solutions of the given equation. $x = 0^{\circ}$ should have been included as a solution	B1	2.3
	(b) Attempts to solve $4\alpha + 199^{\circ} = (360 - 29.0)^{\circ}$	M1	2.2a
	$\alpha = 33.0^{\circ}$	A1	1.1b
		(4)	
		(9 n	narks)
Notes:			
A1: Any tw dM1: Corre A1: Any tw A1: A full s	ots $\arcsin(-0.6)$ implied by any correct answer to of -143.13° , -36.87° , 216.87° , 323.13° ect method to find any value of θ to of $\theta = -76.6^\circ$, -23.4° , 103.4° , 156.6° . Solution leading to all four answers and no extras $.6^\circ$, -23.4° , 103.4° , 156.6° , only		
(ii)(a) B1: See sch B1: See sch	eme		
(ii)(b) M1: For de	ducing the smallest positive solution occurs when $4\alpha + 199^\circ = (360 - 29)^\circ$	0.0)°	
A1: $\alpha = 33^{\circ}$	D		

Question	Scheme		Marks	AOs
12(a)	Sets $3x - 2\sqrt{x} = 8x - 16$		B1	1.1a
	$2\sqrt{x} = 16 - 5x$ $4x = (16 - 5x)^2 \Longrightarrow x =$	$5x + 2\sqrt{x} - 16 = 0$ $\Rightarrow (5\sqrt{x} \pm 8)(\sqrt{x} \pm 2) = 0$	M1	3.1a
	$25x^2 - 164x + 256 = 0$	$\left(5\sqrt{x}-8\right)\left(\sqrt{x}+2\right)=0$	A1	1.1t
	$(25x-64)(x-4) = 0 \Longrightarrow x =$	$\sqrt{x} = \frac{8}{5}, (-2) \Longrightarrow x = \dots$	M1	1.1t
	$x = \frac{64}{25}$	only	A1	2.3
			(5)	
(b)	Attempts to solve $3x - 2\sqrt{x} = 0$		M1	2.1
	Correct solution $x = \frac{4}{9}$		A1	1.1t
	$y_{,,,} 3x - 2\sqrt{x}, y > 8x - 16 x \dots \frac{4}{9}$		B1ft	1.1t
			(3)	

Notes:

(a)

B1: Sets the equations equal to each other and achieves a correct equation

M1: Awarded for the key step in solving the problem. This can be awarded via two routes. Both routes must lead to a value for x.

- Making the \sqrt{x} term the subject and squaring both sides (not each term)
- Recognising that this is a quadratic in \sqrt{x} and attempting to factorise $\Rightarrow (5\sqrt{x}\pm 8)(\sqrt{x}\pm 2)=0$

A1: A correct intermediate line $25x^2 - 164x + 256 = 0$ or $(5\sqrt{x} - 8)(\sqrt{x} + 2) = 0$

M1: A correct method to find at least one value for *x*. Way One it is for factorising (usual rules), Way Two it is squaring at least one result of their \sqrt{x}

A1: Realises that $x = \frac{64}{25}$ is the only solution $x = \frac{64}{25}$, 4 is A0 (b) M1: Attempts to solve $3x - 2\sqrt{x} = 0$ For example Allow $3x = 2\sqrt{x} \Rightarrow 9x^2 = 4x \Rightarrow x = ...$ Allow $3x = 2\sqrt{x} \Rightarrow x^{\frac{1}{2}} = \frac{2}{3} \Rightarrow x = ...$ A1: Correct solution to $3x - 2\sqrt{x} = 0 \Rightarrow x = \frac{4}{9}$ B1: For a consistent solution defining *R* using either convention Either *y*, $3x - 2\sqrt{x}$, $y > 8x - 16 x ... \frac{4}{9}$ Or $y < 3x - 2\sqrt{x}$, $y ... 8x - 16 x > \frac{4}{9}$

Question	Scheme	Marks	AOs
13(a)	$0.2 \mathrm{m}^2$	B1	3.4
		(1)	
(b)	$A = 0.2e^{0.3t}$ Rate of change = gradient = $\frac{dA}{dt} = 0.06e^{0.3t}$	M1	3.1b
	At $t = 5 \implies$ Rate of Growth is $0.06e^{1.5} = 0.269 \text{ m}^2/\text{day}$	A1	1.1b
		(2)	
(c)	$100 = 0.2e^{0.3t} \Longrightarrow e^{0.3t} = 500$	M1 A1	3.1a 1.1b
	$\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days} \qquad 20 \text{ days } 17 \text{ hours}$	M1 A1	1.1b 3.2a
		(4)	
	At $t = 5 \Rightarrow$ Rate of Growth is $0.06e^{1.5} = 0.269 \text{ m}^2/\text{day}$	A1	1.1b
		(2)	
(d)	The model given suggests that the pond is fully covered after 20 days 17 hours. Observed data is inconsistent with this as the pond is only 90% covered by the end of one month (28/29/30/31 days). Hence the model is not accurate	B1	3.5a
		(1)	
		(8 n	narks)
Notes:			
(a)			
B1: 0.2 m ²	oe		
(b)			
	rate of change to gradient and differentiates $0.2e^{0.3t} \rightarrow ke^{0.3t}$		
A1: Correct (c)	answer 0.269 m ² /day		
	sutes $A = 100$ and proceeds to $e^{0.3t} = k$		
A1: $e^{0.3t} =$	-		
	t method when proceeding from $e^{0.3t} = k \Longrightarrow t =$		
A1: 20 days			
(d)			
B1: Valid c	onclusion following through on their answer to (c).		

Question	Scheme	Marks	AOs	
14	$y = (x-2)^{2} (x+3) = (x^{2}-4x+4)(x+3) = x^{3}-1x^{2}-8x+12$	B1	1.1b	
	An attempt to find x coordinate of the maximum point. To score this you must see either • an attempt to expand $(x-2)^2(x+3)$, an attempt to differentiate the result, followed by an attempt at solving $\frac{dy}{dx} = 0$ • an attempt to differentiate $(x-2)^2(x+3)$ by the product rule followed by an attempt at solving $\frac{dy}{dx} = 0$	M1	3.1a	
	$y = x^3 - 1x^2 - 8x + 12 \Longrightarrow \frac{dy}{dx} = 3x^2 - 2x - 8$	M1	1.1b	
	Maximum point occurs when $\frac{dy}{dx} = 0 \Rightarrow (x-2)(3x+4) = 0$	M1	1.1b	
	$\Rightarrow x = -\frac{4}{3}$	A1	1.1b	
	An attempt to find the area under $y = (x-2)^2 (x+3)$ between two values. To score this you must see an attempt to expand $(x-2)^2 (x+3)$ followed by an attempt at using two limits	M1	3.1a	
	Area = $\int (x^3 - 1x^2 - 8x + 12) dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - 4x^2 + 12x\right]$	M1	1.1b	
	Uses a top limit of 2 and a bottom limit of their $x = -\frac{4}{3} R = \left[\frac{x^4}{4} - \frac{x^3}{3} - 4x^2 + 12x\right]_{-\frac{4}{3}}^2$	M1	2.2a	
	$Uses = \frac{28}{3} - \frac{1744}{81} = \frac{2500}{81}$	A1	2.1	
		(9)		

B1: Expands $(x-2)^2(x+3)$ to $x^3-1x^2-8x+12$ seen at some point in their solution. It may appear just on their integral for example.

M1: This is a problem solving mark for knowing the method of finding the maximum point. You should expect to see the key points used (i) differentiation (ii) solution of their $\frac{dy}{dx} = 0$

M1: For correctly differentiating their cubic with at least two terms correct (for their cubic).

M1: For setting their $\frac{dy}{dx} = 0$ and solves using a correct method (including calculator methods)

A1:
$$\Rightarrow x = -\frac{4}{3}$$

M1: This is a problem solving mark for knowing how integration is used to find the area underneath a curve between two points.

M1: For correctly integrating their cubic with at least two correct terms (for their cubic).

M1: For deducing the top limit is 2, the bottom limit is their $x = -\frac{4}{3}$ and applying these correctly within their integration.

A1: Shows above steps clearly and proceeds to $R = \frac{2500}{81}$