M1.(a) (i) Appreciation that one component changes speed while the other component at right angles does not ✓

When entering a denser medium a corpuscle / light accelerates or its velocity / momentum increases perpendicular to the interface ✓

There is a (short range) attractive force between light <u>corpuscle</u> and the (denser) material ✓

Not allowed:

Attraction due to opposite charges

Force making them move faster is not enough

Accelerate in medium

Not gains energy

3

(ii) Light (was shown by experiment to) travel slower in (optically) denser medium OWTTE ✓

Condone 'waves..' instead of 'light'

OWTTE e.g. speed in vacuum higher than speed in other medium

Newton's theory required light to travel faster, wave theory suggested slower speed \checkmark

or

Newton's theory could not explain the slower speed

Huygens theory could explain the slower speed

Not allowed:

Reference to Young's two slit- question asks them about refraction

2

(iii) A corpuscular theory predicts only two (bright) lines / high intensity patches of light whereas a wave theory predicts many fringes ✓

Corpuscles can only travel in straight lines or

waves can produce fringes because (diffract and) interfere / superpose / arrive in and out of phase / have different path differences ✓

Need to describe the patterns ie not just interference fringes are seen for the first mark

2

(b) Substitutes data in photon wavelength = hc / E; Allow for substitution with no conversion to J ✓

$$2.48 \times 10^{-10} \text{ m}$$

For electron: Substitution in $\lambda = \frac{h}{\sqrt{2mE}}$

$$2.48 \times 10^{-10}$$
 (or their λ)
= 6.6×10^{-34} / (2 × 9.11 × 10⁻³¹ × 1.6 × 10⁻¹⁹ V)^{1/2}
No conversion to J gives $\lambda \approx 4 \times 10^{-29}$ and $V \approx 9 \times 10^{38}$ V)

$$V = 24(.4) \text{ V}$$
 = 1.49 × 10⁻¹⁸ / (their λ)² ✓ Allow small rounding errors in dp

May calculate v using $v = h / m\lambda$ then substitution in $V = \frac{1}{2} mv^2 / e$ (for third mark)

[11]

M2.(a) (i) wavelength = $\frac{h}{mv}$ (1)

$$=\frac{6.63\times10^{-34}}{9.11\times10^{-31}\times1.2\times10^{3}}$$
 (1) (= 6.1×10⁻⁷ m)

(ii) charge (= current × time = $4.8 \times 10^{-13} \times 1.0 \times 10^{-3}$) = 4.8×10^{-16} C (1)

$$\frac{4.8 \times 10^{-16}}{(1.6 \times 10^{-19} \times 6)} = 500 \text{ (1)}$$
number of electrons per fringe = $\frac{4.8 \times 10^{-16}}{(1.6 \times 10^{-19} \times 6)} = 500 \text{ (1)}$

(4)

- (b) (i) same **(1)**
 - (ii) interference fringes would be further apart (1) at twice the spacing (1)

as the wavelength would be doubled (1)

because
$$\lambda \propto \frac{1}{\text{speed}} \left[\text{or } \propto \frac{1}{\text{momentum}} \right]_{\text{(1)}}$$
 (max 4)

(c)
$$f\left(=\frac{c}{\lambda}\right) = \frac{300 \times 10^8}{6.1 \times 10^{-7}}$$

$$= 4.9 \times 10^{14} \text{ Hz (1)}$$
[10]