Q1.The table below contains five statements that refer to isotopes and some radium isotopes.

	223 88 Ra	224 88 Ra	225 88 Ra	226 88 Ra
Isotope with the smallest mass number	1			
Isotope with most neutrons in nucleus				
Isotope with nucleus which has the largest specific charge				
Isotope decays by β^- decay to form $^{\begin{subarray}{c} 225\\ 89\end{subarray}}Ac$				
Isotope decays by alpha decay to form $^{220}_{86}\mathrm{Rn}$				

(a)		nplete the table by ticking one box in each row to identify the appropriate ope. The first row has been completed for you.	(4)
(b)	(i)	An atom of one of the radium isotopes in the table is ionised so that it has a charge of $+3.2 \times 10^{-19}$ C.	
		State what happens in the process of ionising this radium atom.	
			(1)
	(ii)	The specific charge of the ion formed is 8.57×10^5 C kg ⁻¹ .	
		Deduce which isotope in the table has been ionised. Assume that both the mass of a proton and the mass of a neutron in the nucleus is 1.66×10^{-27} kg.	

Q2.A positive ion has a charge–to–mass ratio of 2.40×10^7 C kg⁻¹. It is held stationary in a vertical electric field.

Which line, $\bf A$ to $\bf D$, in the table shows correctly both the strength and the direction of the electric field?

	Electric field strength / V m ⁻¹	Direction
Α	4.09 × 10 ⁻⁷	upwards
В	4.09 × 10 ⁻⁷	downwards
С	2.45 × 10 ⁶	upwards
D	2.45 × 10 ⁶	downwards

(Total 1 mark)

Q3.What are the numbers of hadrons, baryons and mesons in an atom of ⁷3Li?

	hadrons	baryons	mesons	
Α	7	3	3	0
В	7	4	4	0
С	7	7	0	0
D	10	7	0	0

(Total 1 mark)

Q4.A calcium ion is formed by removing two electrons from an atom of specific charge of the calcium ion?

A
$$3.2 \times 10^{-19} \text{ C kg}^{-1}$$

		0	
В	$2.9 \times 10^{-18} \text{ C kg}^{-1}$	0	
С	4.8 × 10 ⁶ C kg ⁻¹	0	
D	4.8 × 10 ⁷ C kg ⁻¹	0	
		(1	otal 1 mark)
Q5.A comr	mon type of smoke de	tector contains a very small amount of americium-241, ²⁴ :	Am
(a)	Determine the numb	er of each type of nucleon in one americium-241 nucleus.	
	type of	nucleon number	
	type of	nucleon number	(2)
<i>a</i> >			
(b)	Americium-241 is pro	oduced in nuclear reactors through the decay of plutonium	Ι,
	State the decay proc your answer.	ess responsible for the production of americium-241. Expl	ain
			(2)
			(- /
(c)	An americium-241 n	ucleus decays into nuclide ${ m X}$ by emitting an alpha particle	

Write an equation for the decay of the nucleus and determine the proton number and nucleon number of \boldsymbol{X} .

	nucleon number	
	proton number	(3)
		(-)
(d)	The alpha radiation produced by americium-241 causes the ionisation of nitro and oxygen molecules in the smoke detector.	gen
	State what is meant by ionisation.	
		(1)
(e)	A friend who has not studied physics suggests that a smoke detector containing radioactive material should not be sold.	ng
	Use your knowledge of physics to explain why a smoke detector containing americium-241 does not provide any risk to the user.	
	(То	(2) tal 10 marks)
Q6.The nu	ucleus of $^{9}_{4}\text{Be}$ captures a proton and emits an $lpha$ particle. What is the product nu	cleus?
Α	10 C	
В	7 Li O	

С	⁶ Li	0
•	_	

(Total 1 mark)

Q7.(a) The table below contains data for four different nuclei, P, Q, R and S.

Nuclei	Number of neutrons	Nucleon number
P	5	11
Q	6	11
R	8	14
S	9	17

(i)	Which	nucleus	contains	the	fewest	nrotons	>
(1)	V V I IICI I	HUCIEUS	COHLAINS	เมเษ	ICMC21	PIULUIIS :	1

nucleus	
	(1)

(ii) Which **two** nuclei are isotopes of the same element?

nuclei	and	
		(1)

(iii) State and explain which nucleus has the smallest specific charge.

			(2)
	(iv)	Complete the following equation to represent $\beta^{\scriptscriptstyle -}$ decay of nucleus R to form nucleus $X.$	
		$^{14}_{6}R \rightarrow \qquad X + \qquad + \dots + \dots$	
			(3)
(b)	(i)	The strong nuclear force is responsible for keeping the protons and neutrons bound in a nucleus. Describe how the strong nuclear force between two nucleons varies with the separation of the nucleons, quoting suitable values for separation.	
			(3)
	(ii)	Another significant interaction acts between the protons in the nucleus of an atom. Name the interaction and name the exchange particle responsible for the interaction.	
		Interaction	
		Exchange particle(Total 12 m	(2) arks)

Q8.An atom	n of calcium, ⁴⁸ Ca, is ionised by removing two electrons.	
(i)	State the number of protons, neutrons and electrons in the ion formed.	
	protons	
	neutrons	
	electrons	(3)
(ii)	Calculate the charge of the ion.	
	chargeC	(1)
(iii) (Calculate the specific charge of the ion.	
	specific charge C kg ⁻¹	(2) (Total 6 marks)
Q9. (a) Na	ame the constituent of an atom which	
	(i) has zero charge,	
		(1)
	(ii) has the largest specific charge,	
		(1)

(iii)	when removed leaves a different isotope of the element.	(
The	equation	
	$^{99}_{43}$ Tc $\rightarrow ^{A}_{Z}$ Ru $+^{0}_{-1}\beta + X$	
repre	esents the decay of technetium-99 by the emission of a β^- particle.	
(i)	Identify the particle X.	
		(1
(ii)	Determine the values of A and Z.	
	A =	
	Z =	(2
(iii)	Calculate the specific charge of the technetium–99 $\left(\frac{99}{43}\text{Tc}\right)$ nucleus. State an appropriate unit for your answer.	
	specific charge = unit	(4