Mark schemes

1.	(a)	allow fusion energy for fusion reactions outwards		
		allow radiation pressure for fusion reactions outwards		
		anon radiation procedure for radion reactions eather ac	1	
		are in equilibrium / balanced		
		dependant on scoring 1st mark point		
		allow for 1 mark forces are in equilibrium		
			1	
	(b)	(the star will) expand to become a red giant		
		the answers must be in the correct sequence to score		
		all 3 marks		
			1	
		(the star will) collapse to become a white dwarf		
		allowed outer layers ejected for collapsed		
			1	
		(the star will) cool to become a black dwarf		
		if no other marks score, allow red giant, white dwarf,		
		black dwarf in the correct order for 1 mark	4	
			1	
	(c)	A		
			1	
		it is (moving away from Earth) the slow <u>est</u>		
		or it is the clos <u>est</u> (to the Earth)		
		reason only scores if A is chosen		
		reason only scores in A is anosen	1	
			[7
	(a)	wavelength		
2.	()	this answer only		
		,	1	
	(b)	(extremely) hot and dense		
	(2)	ignore very small		
			1	
	(c)	(directly) proportional		
	(0)	allow a correct description of direct proportionality		
		ignore positive correlation		
			1	
	(d)	6 × 10 ²⁴		
	` '		1	

	(e)	the furthest galaxies are moving the fastest	1
		(this suggests) the universe is expanding (from a very small region)	1
	(f)	expanding at (an ever) greater rate allow expanding faster	1
	(g)	 detects false claims	1
	(h)	wavelength (seems to have) decreased frequency (seems to have) increased	1
3.	(a)	(force of) gravity causes the satellite to accelerate (towards the Earth) allow satellite is (constantly) accelerating	1 [10]
		the acceleration causes a change in direction acceleration causes a change in speed negates this mark point	1
		velocity changes because direction changes	1

(b) length of orbit taken from graph = 42 100 (km)

1

$$42\ 100 = 7.73 \times time$$

or

time =
$$\frac{42100}{7.73}$$

allow

their distance = 7.73 x time

1

time (1 orbit) =
$$5446(s)$$

allow a value consistent with their distance

1

number of orbits =
$$\left(\frac{24 \times 3600}{5446}\right)$$

= 15.86

allow
$$(\frac{24}{1.51}) = 15.86$$

allow a value consistent with their distance

1

number of orbits = 15

allow a value consistent with their distance an answer of 16 scores **4** marks

1

or

length of orbit taken from graph = 42 100 (km) (1)

$$7.73 = \frac{\text{distance}}{24 \times 3600} (1)$$

distance = 667 872 (km) (1)

number of orbits =
$$\left(\frac{667872}{42100}\right)$$

$$= 15.86(1)$$

allow a value consistent with their two distances

number of orbits = 15(1)

allow a value consistent with their two distances up to full marks can be awarded for a method calculating velocity in km/h and time in hours an answer of 15 scores **5** marks

(c) the predicted data is very close to the actual data

1

(d) supported the prediction (made by Bode)

allow predicted and actual values are very close

1

1

so provides evidence that the equation is true / correct / works / accurate allow proves for provides evidence

[11]

4.

(a) gamma rays

1

(b) can travel through the atmosphere

1

(c) explosion of a red super giant or a supernova

1

(d) $1.2 \times 10^9 \text{ Hz}$

1

(e) $3.0 \times 10^8 = 1.2 \times 10^9 \times \lambda$ an answer of 0.25 (m) scores **3** marks allow ecf from **(d)**

1

 $\lambda = \frac{3.0 \times 10^8}{1.2 \times 10^9}$

1

$$\lambda = 0.25 (m)$$

1

(g) same as the radio wave

1

(f) expansion due to fusion energy

1

in equilibrium with gravitational collapse

forces acting inwards equal forces acting outwards gains ${\bf 1}$ mark

1

(h)

Level 2: Scientifically relevant facts, events or processes are identified and given in detail to form an accurate account.		
Level 1: Facts, events or processes are identified and simply stated but their relevance is not clear.		
No relevant content		
Indicative content		
Sun goes from main sequence to red giant		
then from red giant to white dwarf		
when the Sun changes to a red giant the surface temperature will decrease		
and the relative luminosity will increase		
when changing from a red giant to a white dwarf the surface temperature increases		
and the relative luminosity decreases		

[14]

5.

(a) gravity

1

1

- (b) as the wire moves through the Earth's magnetic field
 - a potential difference is induced between the ends of the wire

the wire must be part of a complete circuit

1

1

(c) new trace shows:

twice the frequency

1

twice the amplitude

1

(d) dynamo

dc generator is insufficient

1

(e) the alternator pd changes polarity, the 2nd type of generator does not

1

1

1

1

(f)
$$\frac{230}{V_s} = \frac{690}{57}$$

$$V_s = \frac{230 \times 57}{690}$$

$$V_s = 19 (V)$$

an answer of 19 (V) scores 3 marks

[11]