M1. (a) force due to electric field acts (vertically) downwards on electrons ✓
 <u>vertical</u> (component) of velocity of each electron increases ✓
 horizontal (component of) velocity unchanged (so angle to initial direction increases) ✓

- (b) (i) magnetic flux density should be <u>reversed</u> and adjusted in strength (gradually until the beam is undeflected) \checkmark
 - (ii) <u>magnetic</u> (field) force = Bevand <u>electric</u> (field) force = $eV/d \checkmark$ (Accept Q or q as symbol for e (charge of electron) Bev = eV/d (for no deflection) gives $v = V/Bd \checkmark$
- (c) (gain of) kinetic energy of electron = work done by anode pd or $\frac{1}{2} m v^2 = e V_{(A)} \sqrt{2}$

$$\frac{e}{m}\left(=\frac{v^2}{2V_{(A)}}\right) = \frac{(3.9 \times 10^7)^2}{2 \times 4200}$$

[9]

3

1

2

3

1

- M2. (a) (i) diffraction \checkmark
 - (ii) the electrons in the beam must have the same wavelength 🗸

otherwise electrons of different wavelengths (or speeds/velocities/energies/momenta) would

(b) (i) (eV =
$$\frac{1}{2} m \mathbf{v}^2$$
 gives) either $\mathbf{v} = \sqrt{\frac{2eV}{m}}$

or $1.6 \times 10^{-19} \times 25000 = \frac{1}{2} \times 9.1 \times 10^{-31} \times v^2 v^2$

$$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 25000}{9.1 \times 10^{-31}}} = 9.4 \times 10^7 \,\mathrm{m \ s^{-1}} \sqrt{\frac{10^7 \,\mathrm{m \ s^{-1}}}{10^7 \,\mathrm{m \ s^{-1}}}}$$

p or $mv (= 9.1 \times 10^{-31} \times 9.4 \times 10^7) = 8.5 \times 10^{-23} \sqrt{2}$

kg m s⁻¹ (or N s) ✔

alternatives for first two marks

$$p \text{ or } mv = \sqrt{2meV} \checkmark = \sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 25000} \checkmark$$

4

(ii) any two of the first three mark points

increase of pd increases the speed (or velocity/energy/ momentum) of the electrons 🗸

(so) the electron wavelength would be smaller \checkmark

(and) the electrons would diffract less (when they pass through the lenses) \checkmark

and

the image would show greater resolution (or be more detailed) \checkmark

max 3

[10]

because the filament will become hotter and will emit more electrons (per 2 second) (1)

(ii) the speed (or kinetic energy) of the electrons will increase (1)

because the electrons (from the filament) are attracted towards the anode with a greater acceleration (or force) **(1)**

(or gain more kinetic energy in crossing a greater pd)

2

2

(b) (i) (magnetic) force on each electron in the beam is perpendicular to velocity **(1)**

no work is done on each electron by (magnetic) force so ke (or speed) is constant **(1)**

magnitude of (magnetic) force is constant because speed is constant **(1)**

(magnetic) force is always perpendicular to velocity so is centripetal **(1)**

max 3

4

2

(ii) rearranging
$$r = \frac{mv}{Be}$$
 gives $\frac{e}{m} = \frac{v}{Br}$ (1)

$$\frac{e}{m} = \frac{7.4 \times 10^{\circ}}{6.0 \times 10^{-4} \times 68 \times 10^{-3}} = 1.81 \times 10^{\circ} \text{ (1) C kg}^{\circ} \text{ (1)}$$

for correct answer to 2 sf (1)

(iii) specific charge for the electron ≈ 2000 × specific charge of H⁺ (1)
 (accept = and accept any value between 1800 and 2000)

which was the largest known specific charge before the specific charge of the electron was determined/measured (1)

(or which could be due to a much greater charge or a much smaller mass of the electron)

[13]

M4.

(a)

- (i) emission of (conduction) electrons from a heated metal (surface) or filament/cathode (1) work done on electron = eV (1)
- (ii) gain of kinetic energy (or $\frac{1}{2} mv^2$) = eV; rearrange to give required equation (1)
- (b) (i) work done = force × distance moved in direction of force (1) force (due to magnetic field) is at right angles to the direction of motion/velocity
 [or no movement in the direction of the magnetic force
 ∴ no work done] (1)
 electrons do not collide with atoms (1)

any two (1)(1)

[alternative for 1st and 2rd marks (magnetic) force has no component along direction of motion **(1)** no acceleration along direction of motion **(1)** or acceleration perpendicular to velocity]

$$r = \frac{mv}{Be} \left(orBev = \frac{mv^2}{r} \right)$$
(1)
$$v^2 = \frac{2eV}{m}$$
(1)

$$r^{2}\left(=\frac{m^{2}\nu^{2}}{B^{2}e^{2}}\right) = \frac{m^{2}}{B^{2}e^{2}} \times \frac{2eV}{m} = \frac{2mV}{B^{2}e}$$
 (1)

(iii) (rearranging the equation gives)
$$\frac{e}{m} = \frac{2V}{B^2 r^2}$$
 (1)

$$\frac{e}{m} = \frac{2 \times 530}{(3.1 \times 10^{-3})^2 \times (25 \times 10^{-3})^2} = 1.7(6) \times 10^{11}$$
Ckg⁻¹ (1)

[10]

7

3

(a) (i) metal wire emits electrons when heated (1) conduction electrons in metal gain kinetic energy when wire is heated (1)

- electrons from wire would be absorbed/scattered/stopped by gas atoms
 or collide with gas atoms and lose kinetic energy or speed (1)
- (iii) electrons carry negative charge so anode needs to be positive (to attract them) **(1)**
- (b) (i) E_{k} (or $\frac{1}{2}mv^{2}$) (= work done or eV) = 1.6 × 10⁻¹⁹ × 2500 (1) = 4.0 × 10⁻¹⁶ J (1)

(ii)
$$v \left(= \left(\frac{2E_k}{m}\right)^{1/2} \right) = \left(\frac{2 \times 4.0 \times 10^{-16}}{9.11 \times 10^{-31}}\right)^{1/2}$$
 (1)

= 3.0 × 10⁷ m s⁻¹ (1)

(allow C.E. for value of E_{k} from (i))

[8]

M5.

4

4