Mark schemes

1.

2.

(a) Silicon dioxide layer ✓

Accept Silicon dioxide

1

(b)

drain

gate

source ✓

1

(c) For lamp $P = I^2 R$

$$I = \sqrt{(P/R)} = \sqrt{(0.65 \text{ W} / 154 \Omega)} = 65 \text{ mA} \checkmark_1$$

Must use $P = I^2 R$

This leads to a voltage across the lamp of approx 10 V and a $V_{
m DS}$ of approx 2 V

Read from graph to give $V_{\rm GS}$ = 3.4 V \checkmark_2

Accept a $V_{\rm GS}$ range of 3.3 V to 3.5 V

2

(d) Current consumption on stand-by: $8.5 \times 10^9 \times 10 \times 10^{-9} = 85 \text{ A} \checkmark 1$ Makes a meaningful calculation (one which can lead to a

Makes a meaningful calculation (one which can lead to a conclusion) using data for the CPU.

Battery life: 3600 C × 3.110 = 1.12 × 10^4 C \checkmark_2

Makes a meaningful calculation (one which can lead to a conclusion) using data for battery.

Use $1.12 \times 10^4 = 85 \times t$

Gives t = 131.8 seconds (accept 132 seconds OR just over 2 mins) which is much less than 12 hours \checkmark_3

Uses the value of t to reach a valid conclusion

OR

Uses the values of the currents from the CPU and battery to reach a valid conclusion

[7]

(a) Photoconductive (accept reverse bias)

1

3

1

1

1

1

1

3

[6]

(b)

	Tick (✓) if correct
Non-inverting amplifier	
Comparator	√
Summing amplifier	
Difference amplifier	

(c) Light level ~ 1000 lux +/- 10%

(d) $V_x = IR$; $V_x = 100 \mu A \times 20 k\Omega = 2 V$

(e) Rule that if $V_- > V_+$ then V_{out} is 0 V (low)

Voltage drop across LED so LED is ON

Do not allow LED is ON if supported by incorrect reason

(a) With the north pole facing the sensor:

Higher sensitivity/larger gradient \checkmark over very short range \checkmark Some ambiguity in liquid level due to peak in graph – (more than one level referenced to a single output reading) \checkmark

OR

3.

With the south pole facing the sensor:

Less sensitivity/smaller gradient \checkmark but covers a larger range \checkmark No ambiguity in liquid level – (each level produces a discrete output up to saturation) \checkmark

Mark awarded for each compared point

(b) 2.4 divisions @ 5 ms / div = 12 ms

Periodic time $T = 12 \text{ ms} \times 3 = 36 \text{ ms} \checkmark$

Or

7.2 divisions @ 5 ms / div = 36 ms

$$f = 1 / T$$
; $f = 1 / 36 \text{ ms}$; 27.8 rev / sec \checkmark

27 full revolutions in one second ✓

One mark for appropriate reading from graph to produce periodic time (T).

One mark for frequency using their (T).

One mark for rounding down

[6]

4.

(a) Photoconductive mode

Accept 'reverse bias'

1

3

(b) Dark currents will become a source of noise – need to keep S:N as high as possible OWTTE

OR

Need to have a large difference in signal when detector is in light and dark \checkmark

Must include idea of 'noise'

OR

Must include concept of large signal change to represent digital signal

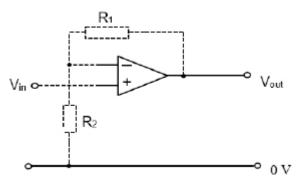
1

(c) At 850 nm, $R_{\lambda} = 0.50 \text{ A/W } \checkmark$

Reading from graph

Allow 0.49 A/W to 0.51 A/W

Using
$$R_{\lambda} = \frac{I_p}{P}$$
 $I_p = R_{\lambda} \times P$ $0.50 \times 4 \times 10^{-6} = 2 \ \mu A \checkmark \ ecf$


$$V_{\mathrm{out}}$$
 = I_{p} × R 2 μ A × 560 $k\Omega$ = +1.12 V \checkmark

Accept voltage in range of 1.10 V to 1.14 V

Accept value without + sign

3

(d)

Correct configuration of R_1 and R_2 \checkmark

 R_1 : R_2 ratio 3: 1 in suggested range \checkmark

Label the input point which must have a direct connection to the non-inverting input \checkmark

One mark only

An inverting op amp configuration with a voltage gain -4.

3

[8]

- 5.
- (a) +ve knee develops at 0.7 V and does not exceed 1.5 V at 30 mA ✓

–ve knee develops at 5.1 V; 5 mA with near vertical drop. Does not exceed – 5.5 V at -30 mA \checkmark

2

(b) Zener diode provides a reference voltage for non-inverting input ✓

Or

Zener diode provides a stabilised voltage for non-inverting input ✓ Accept combination of the two statements

1

(c) $I = V/R = 3.9 \text{ V} / 100 \Omega = 39 \text{ mA}$

This is larger than the minimum current to make Zener diode work so the resistor value is fine. ✓

$$P = I^2 R = (39 \times 10^{-3})^2 \times 100 = 0.152 \text{ watts}$$

This is greater than the power rating for the resistor, so is not a suitable power rating for the resistor \checkmark

Ecf from value of I

2

(d) The reference voltage at the non-inverting input is now smaller ✓

This will cause the output **W** to switch at a lower light intensity than before ✓

2

1

1

(e) $Q = (\overline{X + Y}) \cdot W \checkmark$

Accept transformations eg

$$Q = \overline{X} \cdot (\overline{Y + \overline{W}})$$

$$Q = \overline{X} \cdot Y \cdot \overline{W}$$

(f) MOSFET has large input impedance

OR

MOSFET causes no loading of the logic gate output. \checkmark

[9]