1 1 1 1 1 1 1 1 1 [10] # Mark schemes | 1. | |----| |----| - (a) **B** - (b) a control - (c) record the initial temperature of the two thermometers in each flask allow initial temperature is a control variable ensure initial temperature is the same in both flasks switch the infrared heater on and start the stop clock (at the same time) allow switch on the power supply for switch on the heater after five minutes record the (final) temperature from both flasks allow calculate the temperature increase / change after five minutes see / check if the temperature inside the flasks had increased by different amounts - (d) 27 (°C) allow 27 (°C) identified on the table allow test 3 - (e) ignore (the result) allow repeat (the result) or - (f) (33/3 =) 11 - (g) the black flask absorbed the most infrared during the five minutes ## Level 3 (5-6 marks): A detailed and coherent plan covering all the major steps is provided. The steps in the method are logically ordered. The method would lead to the production of valid results. A source of inaccuracy is provided. ## Level 2 (3-4 marks): The bulk of a method is described with mostly relevant detail. The method may not be in a completely logical sequence and may be missing some detail. ## Level 1 (1-2 marks): Simple statements are made. The response may lack a logical structure and would not lead to the production of valid results. ### 0 marks: No relevant content. ### **Indicative content** place a glass block on a piece of paper draw around the glass block and then remove from the paper draw a line at 90° to one side of the block (the normal) use a protractor to measure and then draw a line at an angle of 20° to the normal replace the glass block using a ray box and slit point the ray of light down the drawn line mark the ray of light emerging from the block remove the block and draw in the refracted ray measure the angle of refraction with a protractor repeat the procedure for a range of values of the angle of incidence #### possible source of inaccuracy the width of the light ray which makes it difficult to judge where the centre of the ray is [6] (a) magnification = $\frac{\text{image height}}{\text{object height}}$ dividing by an object height of 1 cm gives the same (numerical) value 1 (b) award **1** mark for each correct line if more than one line is drawn from any em wave then none of those lines gain credit (c) ionising [5] - 5. - (a) K (b) Decreases 1 1 3 1 (c) use a metre rule / 30 cm ruler to measure across 10 (projected) waves accept any practical number of waves number for 10 and then divide by 10 1 1 (d) 1.2 cm = 0.012 m 1 $18.5 \times 0.012 = 0.22(2) \text{ (m / s)}$ 1 allow 0.22(2) with no working shown for 2 marks typical walking speed = 1.5m/s accept any value e.g. in the range 0.7 to 2.0 m/s so the water waves are slower (than a typical walking speed) this cannot score on its own [8] 6. (resultant) force = mass x acceleration (a) allow F = ma symbols must be correct 1 1 (b) $(2.7 - 1.5) = 0.75 \times a$ an answer of 1.6 scores 3 marks 1 $a = \frac{1.2}{0.75}$ allow compensation marks for correct use of incorrect resultant force 1 a = 1.6 1 m/s^2 1 (c) transverse 1 the oscillation / vibration is perpendicular to the direction of energy transfer allow wave travel for energy transfer 1 (d) use springs with a smaller spring constant allow use weaker springs or use a trolley with greater mass allow use a heavier trolley do not accept use a larger trolley allow add a mass / weight to the trolley (Total 8 marks) **7**. transverse (a) 1 1 (b) the water at point X moves up and down 1 1 1 1 - 9. - (a) R - (b) S - (c) $T = \frac{1}{0.20}$ - T = 5(.0 s) - (d) The wavelength decreases - (e) Time taken by the wave to travel the length of the tray - (f) Depth of water - (g) as the depth increases, the speed increases allow positive correlation (between speed and depth) - (h) 0.49 (m/s) 1 [9] - 10. (a) Microwaves Radio waves - (b) normal 1 - (c) reflected ray drawn to the right of the normal ignore arrows correct ray of light drawn using a ruler with i = r (d) they need to be flexible ignore bendy / ductile / malleable / elastic 1 1 1 1 1 1 1 1 1 1 1 - (e) transmitted - absorbed - absorbed [9] - 11. - (a) D - (b) Any one from: - mutation (of genes/DNA/chromosomes) allow can damage OR destroy genes/DNA/chromosomes ignore damage/destroy cells/tissues/organs ignore mutates cells - cancer/tumour - cell death - allow kills cells - (c) the risk of harm is lower from the X-ray - by a factor of 60 - (d) 0.0060 sieverts - (e) $\frac{0.1}{2.5} \times 100$ - 4 (%) - allow 0.04 for 1 mark [7] - 12. - (a) B - (b) electrical heating - (c) orange allow a correct answer indicated in the box provided the answer space is blank | (d) | becomes (more) red | | |------|--|-----------| | | allow changes from mainly orange to mainly red | 1 | | (e) | the independent | | | | allow a correct answer indicated in the box provided the answer space is blank | | | | | 1 | | (f) | pour (hot) water into the (hollow metal) cube | 1 | | | point the IR detector at each / a side and take a reading | - | | | allow point the IR detector at the cube and take a reading | | | | allow IR detector touching the surface and take a reading | | | | allow take the temperature for take a reading | 1 | | | keen the detector the came distance from each surface | 1 | | | keep the detector the same distance from each surface | 1 | | (g) | 0.1°C | 1 | | (h) | one bar drawn to 68.0 (°C) | 1 | | (11) | ignore the position of the bars on the x-axis | | | | | 1 | | | one bar drawn to 28.0 (°C) | 1 | | | tallest bar labelled Matt black and shortest bar labelled Shiny silver | | | | | 1 | | (i) | any one from: | | | | (matt) black is the best emittershiny silver is the worst emitter | | | | allow matt white and shiny black are (almost) the same | | | | at emitting | | | | allow black is a good emitter | | | | allow silver is a poor emitter | | | | allow an answer in terms of highest / lowest
temperature | | | | ignore any reference to absorption / reflection | | | | | 1
[13] | | | | [13] | (a) correct angle labelled answer must indicate the angle, the letter r on it's own is insufficient (b) 58 (degrees) allow 57 to 59 inclusive (c) ray continues in a straight line to the edge of the block ray refracts away from the normal both rays in the air should be parallel judge by eye (d) random allow a correct answer indicated in the box provided the answer space is blank (e) 25 (f) less than allow a correct answer indicated in the box provided the answer space is blank (g) there is no data/results outside of that range allow that is all the student measured 1 1 1 1 1 1 1 1 (h) light would not pass through an opaque block or light will pass through a transparent block an answer which does not refer to either transparent or opaque should be taken as referring to transparent 1 (i) The angles of incidence tested 1 [11] focal length (a) 14. this answer only 1 (b) one correct line drawn from the top of the object, passing through the lens and crossing or meeting given line ignore any arrow drawn on the line if two lines are drawn, both must be correct 1 inverted image drawn at the correct position and length arrowhead required 1 similarity (c) (both are) diminished 1 difference concave is virtual and convex is real concave is upright and convex is inverted allow smaller for diminished a comparison must be made ignore reference to positions of images (d) an answer of 1.5 (mm) scores 3 marks $$6.0 = \frac{9.0}{\text{object height}}$$ 1 object height = $$\frac{9.0}{6.0}$$ 1 1 object height = 1.5 (mm) provided working can be seen, an attempt to convert 9.0 mm to cm or m with all other steps correct scores **2** marks [8] 15. (a) metre rule allow metre ruler allow tape measure do not accept ruler do not accept metre stick (b) (wave) speed = frequency × wavelength allow $v = f \lambda$ 1 1 (c) an answer of 44 (m/s) scores 3 marks $$80 \text{ cm} = 0.8 \text{ m}$$ 1 $$v = 55 \times 0.8$$ this mark may be awarded if wavelength is incorrectly or not converted 1 $$v = 44 \text{ (m/s)}$$ allow correct calculation using an incorrectly or not converted wavelength an answer of 4400 (m/s) scores **2** marks | | (d) | move the (wooden) bridge | 1 | | |-----|-----|--|-----|--------------| | | | to the right dependent on 1 st mp being scored | 1 | | | | | OR | • | | | | | change the mass/weight (on the string) scores 1 mark | | | | | | add more masses/weights (to the string) scores both marks | | | | | (e) | Level 2 : The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced. | 3–4 | | | | | Level 1 : The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear. | | | | | | No relevant content | 1-2 | | | | | Indicative content | | | | | | add or take away masses from the string (ignore any stated values) | | | | | | adjust frequency using the signal generator and/or move the wooden bridge | | | | | | observe a steady / stationary pattern measure the wavelength | | | | | | calculate wave speed from frequency and wavelength | | | | | | a Level 1 answer should include a way of changing tension a complete Level 2 answer would include either changing frequency and/or moving the bridge | | [44] | | 16. | (a) | В | 1 | [11] | | | (b) | upright | | | | | | virtual | 1 | | | | | | 1 | | | | | | | | image height = 9.5(mm)(c) allow any value between 9 and 10 inclusive allow 5 (squares) 1 object height = 24(mm) allow 12 (squares) 1 magnification= $\frac{9.5}{24}$ or their image height their object height 1 magnification = 0.4 allow an answer that rounds to 0.4 provided both object height and image height are correct or their image height their object height ignore any units correctly calculated 1 an answer of 0.4 scores 4 marks (d) decrease increased (a) [8] 1 (b) (count) how many waves pass a point 1 in one second this is dependent on the first mark point being awarded 1 or (count) number of waves that pass a point in a given time allow a specific time for a given time or (count) number of waves that are produced in a given time (1) and divide by that time in seconds this is dependent on the first mark point being awarded allow an answer in terms of measuring the frequency of the vibrating bar period = $\frac{1}{5}$ (c) 1 period = 0.21 seconds / s 1 [6] (a) glass vase 1 18. 1 (b) transmit the T-shirt reflects all wavelengths / colours of light (equally) (c) allow T-shirt reflects (white / all) light 1 (d) changes from red to black it appears black it is darker is insufficient 1 as the cap absorbs (all) the (blue) light as the cap does not reflect the (blue) light (e) distance the time all 3 lines correct allow 1 mark for 1 line correct if more than one line drawn from a variable all of those lines do not score 2 (f) the (infrared) heater allow infrared (radiation) do not accept answers where burning yourself is given as the hazard 1 answer must be a comparison, e.g. the matt / black surface is the better absorber (of (g) infrared radiation) matt black is a good absorber is insufficient 1 [9] С (a) 19. 1 (b) radio waves have a longer wavelength than ultraviolet 1 (c) (risk of) skin cancer cancer is insufficient or (prematurely) ageing skin skin damage is insufficient ignore kills skin cells 1 risk is higher (for X-ray of uds than X-ray of chest) (d) 1 by a factor of 50 or risk calculated for each type of X-ray chest X-ray = 1:200 000 (1) uds = 1:4000 (1)1 [5] - (a) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question. - (b) 0.4 (c) wave speed = frequency × wavelength allow $v = f \lambda$ 1 1 (d) $7200 = 0.4 \times \text{wavelength}$ 1 $$wavelength = \frac{7200}{0.4}$$ 1 wavelength = 18000 (m) allow up to full marks for ecf using their answer to part (b) a method shown as $7200 \times 2.5 = 18000$ scores 0 marks 1 2 an answer 18 000 scores 3 marks (e) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question. [8] - 21. - (a) sound (b) (visible) light 1 1 (c) cooking food 1 (d) 1.2 gigahertz 1 (e) $300\ 000\ \times\ 1000\ =\ 300\ 000\ 000\ m/s$ 1 (f) wave speed = frequency × wavelength $allow v = f \lambda$ 1 (g) $300\ 000\ 000 = 1200\ 000\ 000 \times \lambda$ an answer of 0.25 scores **3** marks $\lambda = \frac{300\,000\,000}{1\,200\,000\,000}$ allow ecf from (e) $\lambda = 0.25 (m)$ [10]