Q1.(a) Some people wear magnetic bracelets to relieve pain.

Figure 1 shows a magnetic bracelet.

There are magnetic poles at both **A** and **B**. Part of the magnetic field pattern between **A** and **B** is shown.

Figure 1

what is the pole at A?	
What is the pole at B ?	

(1)

(1)

(b) **Figure 2** shows two of the lines of the magnetic field pattern of a current-carrying wire.

Figure 2

The direction of the current is reversed.

What happens to the direction of the lines in the magnetic field pattern?

(c) Fleming's left-hand rule can be used to identify the direction of a force acting on a

current-carrying wire in a magnetic field.

(i) Complete the labels in **Figure 3**.

Figure 3

(2)

(ii) Figure 4 shows:

- the direction of the magnetic field between a pair of magnets
- the direction of the current in a wire in the magnetic field.

Figure 4

In which direction does the force on the wire act?	
	(1)

(iii) Suggest three changes that would decrease the force acting on the wire.

1	
2	
3	

(1)

(d) Figure 5 shows part of a moving-coil ammeter as drawn by a student.

The ammeter consists of a coil placed in a uniform magnetic field. When there is a current in the coil, the force acting on the coil causes the coil to rotate and the pointer moves across the scale.

Figure 5

(i) The equipment has **not** been set up correctly.

What change would make it work?	

(ii) Figure 6 shows the pointer in an ammeter when there is no current.

Figure 6

What type of error does the ammeter have?

	(1)
/Tota	(') 110 marks
(10ta	l 10 marks)

Q2. (a) A laboratory technician sets up a demonstration.

A flexible wire is suspended between the ends of a horseshoe magnet. The flexible wire hangs from a cotton thread. When the switch is closed, the wire kicks forward.

	lden	tify the effect which is being demonstrated.	
			. (1)
(b)	A te	eacher makes some changes to the set-up of the demonstration.	
	Wha	at effect, if any, will each of the following changes have?	
	(i)	more powerful horseshoe magnet is used.	
			(1)
			()
	(ii)	The connections to the power supply are reversed.	
			. (1)
			(Total 3 marks)

Q3.The diagram shows a device called a current balance.

(a)	(i)	When the switch is closed, the part of the wire labelled XY moves upwards.	
		Explain why.	
			(2)
	(ii)	What is the name of the effect that causes the wire XY to move?	
			(1)
	(iii)	An alternating current (a.c.) is a current which reverses direction. How many times the current reverses direction in one second depends on the frequency of the alternating supply.	
		Describe the effect on the wire XY if the battery is replaced by an a.c. supply having a frequency of 5 hertz.	
			(2)

(b) The diagram shows how a small weight can be used to make the wire **XY** balance horizontally.

Use the data in the diagram and the equation in the box to calculate the force, **F**, acting on the wire **XY**.

moment = force × perpendicular distance from the line of action of the force to the axis of rotation

Show clearly how you work out your answer.	
Force = N	C

(Total 8 marks)

Q4.Figure 1 shows a piece of apparatus called a current balance.

Figure 1 Wire Insulating bar Magnet Metal support

When the switch is closed, the part of the wire labelled **X** experiences a force and moves downwards.

What is the name of the effect that causes the wire X to move downwards?

- (1) Suggest one change you could make to the apparatus in Figure 1 that would (b) increase the size of the force that wire **X** experiences.
 - (1)
- Figure 2 shows how a small weight placed on the insulating bar makes the wire X (c) go back and balance in its original position.

8 cm

Figure 2

The wire X is 5 cm long and carries a current of 1.5 A.

The small weight causes a clockwise moment of 4.8×10^{-4} Nm.

(a)

Calculate the magnetic flux density where the wire X is positioned	
Give the unit.	
Magnetic flux density = Unit	(6)
(Tota	(6) (al 8 marks

Q5.Musicians sometimes perform on a moving platform.

Figure 1 shows the parts of the lifting machine used to move the platform up and down.

Figure 1

(a)	What type of system uses a liquid to transmit a force?	
		(1)

(b)	The pump creates a pressure in the liquid of 8.75 x 10 ⁴ Pa to move the platform upwards.
	Calculate the force that the liquid applies to the piston.

(2)

Force = N

(c) The liquid usually used in the machine is made by processing oil from underground wells. A new development is to use plant oil as the liquid.

Extracting plant oil requires less energy than extracting oil from underground wells.

Suggest an environmental advantage of using plant oil.	
	(1)

Musicians often use loudspeakers. (d)

Figure 2 shows how a loudspeaker is constructed.

Figure 2 Coil Permanent magnet S ➤ Movement S a.c. supply

Speaker cone

Explain why.	

The loudspeaker cone vibrates when an alternating current flows through the coil.

 (4)
(Total 8 marks)