A LEVEL PHYSICS WORKED SOLUTIONS

6.2. Thermal Physics MCQ

Worked Solutions by Lewis Matheson from ALevelPhysicsOnline.com in collaboration with PhysicsAndMathsTutor.com

1.

2.

3.

A solar panel transfers energy at a rate of 1.2 kW to liquid passing through it. The liquid has a specific heat capacity of 4.0 kJ kg⁻¹ K⁻¹.

When the liquid flows through the solar panel, its temperature increases by 3.0 K.

The flow rate of the liquid is			p.Q.mc DO		
Α	0.10 kg s ⁻¹ .		t t		
в	1.1 kg s ^{−1} .	0	M = P = 1200 = 0.10		
С	10 kg s ^{−1} .	0	t c∆9 4000×3.0		
D	100 kg s ^{−1} .	0			

(Total 1 mark)

A gas occupies a volume V. Its particles have a root mean square speed (c_{rms}) of u. The gas is compressed at constant temperature to a volume 0.5V.

What is the root mean square speed of the gas particles after compression?

A	$\frac{u}{2}$	0	$\frac{1}{2} m \left(\left(c_{rus} \right)^2 \right)^2$	3kT	(rus ~T
В	u		·		
С	2 <i>u</i>	0	T constant	.: Crus	constant
D	4 <i>u</i>	0			

(Total 1 mark)

A fixed mass of gas is heated at constant volume. The graph is drawn for this process.

4.

PhysicsAndMathsTutor.com

What do *x* and *y* represent? p~T Pressure court be negative : on y-axis x y pressure in Pa temperature in °C $^{\circ}$ Α В temperature in °C pressure in Pa Kehrin can't be regative 0 С pressure in Pa temperature in K ° an x-exis temperature in K $^{\circ}$ D pressure in Pa

4 m s⁻¹

6 m s⁻¹

Three particles are travelling in the same plane with velocities as shown in the vector diagram.

2 m s⁻¹

What is the root mean square speed of the particles?

An ideal gas is contained in a cubical box of side length a. The gas has N molecules each of mass m. $\therefore V: \alpha^3$

What is the pressure exerted by the gas on the walls of the box?

$$A \quad \frac{mNa^{3}}{2} \times c_{rms}^{2} \quad \bigcirc \qquad \rho V = \frac{1}{3} Nm (c_{rms})^{2}$$

$$B \quad \frac{mNa^{2}}{2} \times c_{rms}^{2} \quad \bigcirc \qquad \rho = \frac{Nm}{3V} \cdot c_{rms}^{2}$$

$$C \quad \frac{mN}{3a^{2}} \times c_{rms}^{2} \quad \bigcirc \qquad \rho = \frac{Nm}{3V} \cdot c_{rms}^{2}$$

$$D \quad \frac{mN}{3a^{3}} \times c_{rms}^{2} \quad \bigcirc \qquad \rho = \frac{Nm}{3a^{3}} \cdot c_{rms}^{2}$$

7.

Which statement is true about an experiment where Brownian motion is demonstrated using smoke particles in air?

Α	The experiment makes it possible to see the motion of air molecules.				
В	The motion is caused by the collisions of smoke particles with each other.				
С	The motion is caused by collisions between air molecules and smoke particles.				
D	The motion occurs because air is a mixture of gases and the molecules have different masses.	0			
			(Total 1 mark)		
Which is not an assumption about gas particles in the kinetic theory model for a gas?					
Α	They collide elastically with the container walls.	0			
В	They have negligible size compared to the distance between the container walls.				
С	C They travel between the container walls in negligibly short times.				
D	D They collide with the container walls in negligibly short times.				
	Time between collisions is not neglig	ritale	(Total 1 mark)		

PhysicsOnline.com

The graph shows the variation of pressure p with temperature θ for a fixed mass of an ideal gas at constant volume.

What is the gradient of the graph?

(Total 1 mark)

PhysicsOnline

9.

Two flasks **X** and **Y** are filled with an ideal gas and are connected by a tube of negligible volume compared to that of the flasks. The volume of **X** is twice the volume of **Y**. **X** is held at a temperature of 150 K and **Y** is held at a temperature of 300 K

The average mass of an air molecule is 4.8×10^{-26} kg

What is the mean square speed of an air molecule at 750 K?

A transparent illuminated box contains small smoke particles and air.
 The smoke particles are observed to move randomly when viewed through a microscope.

What is the cause of this observation of Brownian motion?

A Smoke particles gaining kinetic energy by the absorption of light.

B Collisions between smoke particles and air molecules.

C Smoke particles moving in convection currents caused by the air being heated by the light.

D The smoke particles moving randomly due to their temperature.

(similar to Q6

(Total 1 mark)

 $^{\circ}$

 $^{\circ}$

 $^{\circ}$

A continuous stream of water falls through a vertical distance of 100 m.
 Assume no thermal energy is transferred to the surroundings.
 The specific heat capacity of water is 4200 J kg⁻¹ K⁻¹.

What is the temperature difference of the water between the top and bottom of the waterfall?

PhysicsOnline

14.

A student measures the power of a microwave oven. He places 200 g of water at 23 $^{\circ}$ C into the microwave and heats it on full power for 1 minute. When he removes it, the temperature of the water is 79 $^{\circ}$ C.

The specific heat capacity of water is 4200 J kg⁻¹ K⁻¹.

What is the average rate at which thermal energy is gained by the water?

Which of the following is **not** used as valid assumption when deriving the equation $P = \frac{1}{2} Nm (c_{rms})^2$ in the simple kinetic theory of gases?

A liquid flows continuously through a chamber that contains an electric heater. When the steady state is reached, the liquid leaving the chamber is at a higher temperature than the liquid entering the chamber. The difference in temperature is Δt .

Which of the following will increase Δt with no other change?

A	1.0 × 10 ²²	0	$M_r = 12 + (2 \times 16) = 44g$
В	3.0 × 10 ²²	0	$n = \frac{M}{2} = \frac{2.2}{2.3} = 50 \text{ modes}$
С	3.0 × 10 ²⁵		Mr 0.044
D	4.7 × 10 ²⁵	0	00
			$N = N N_{A} = 50 \times 6.02 \times 10^{43}$ (Total 1 mark)
			N= 3.01 × 10 ²⁵ molecules

Brownian motion

makes it possible to see the motion of air molecules. Α 0 В is caused by the collisions of smoke particles. 0 С is caused by collisions between air molecules and smoke particles. occurs because air is a mixture of gases and the molecules have D 0 different masses. (similar to Q6 and Q11 (Total 1 mark) A sample **P** of an ideal gas contains 1 mol at an absolute temperature *T*. 19. A second sample **Q** of an ideal gas contains $\frac{2}{3}$ mol at an absolute temperature 2*T*. The total molecular kinetic energy of **P** is E. What is the total molecular kinetic energy of Q?

The diagram shows two flasks X and Y connected by a thin tube of negligible volume.

The flasks contain an ideal gas.

The volume of X is twice the volume of Y. When X is at a temperature of 100 K and Y is at a temperature of 400 K there is no net transfer of particles between the flasks.

21.

When an ideal gas at a temperature of 27 °C is suddenly compressed to one quarter of its volume, the pressure increases by a factor of 7

525-273 = 252 °C

